×

Davenport constant of a box in \(\mathbb{Z}^2\). (English) Zbl 1459.11069

Summary: Let \(X\) be a subset of an abelian group \(G\). Then a sequence \(S\) over \(X\) is called a zero-sum sequence if the sum of \(S\) is zero, and a minimal zero-sum sequence if it is a non-empty zero-sum sequence such that all proper subsequences are not zero-sum sequences. The Davenport constant of \(X\), denoted by \(\mathsf{D}(X)\), is defined as the supremum of lengths of minimal zero-sum sequences over \(X\). In this paper, we investigate minimal zero-sum sequences over \([[ -1,m]]\times[[-1,n]]\subset\mathbb{Z}^2\). We completely determine the structure of minimal zero-sum sequences of length at least \((m+1)(n+1)\), and hence derive that \(\mathsf{D}([[-1,m]]\times [[-1,n]])=(m+1)(n+1)\).

MSC:

11B75 Other combinatorial number theory
11B30 Arithmetic combinatorics; higher degree uniformity
11P70 Inverse problems of additive number theory, including sumsets
Full Text: DOI

References:

[1] D. F. Anderson, S. T. Chapman and W. W. Smith,Some factorization properties of Krull domains with infinite cyclic divisor class group, J. Pure Appl. Algebra 96 (1994), 97-112. · Zbl 0831.13001
[2] N. R. Baeth and A. Geroldinger,Monoids of modules and arithmetic of direct-sum decompositions, Pacific J. Math. 271 (2014), 257-319. · Zbl 1347.16006
[3] N. R. Baeth, A. Geroldinger, D. J. Grynkiewicz and D. Smertnig,A semigrouptheoretical view of direct-sum decompositions and associated combinatorial problems, J. Algebra Appl. 14 (2015), art. 1550016, 60 pp. · Zbl 1385.16003
[4] P. Baginski, S. T. Chapman, R. Rodriguez, G. J. Schaeffer and Y. She,On the Delta set and catenary degree of Krull monoids with infinite cyclic divisor class group, J. Pure Appl. Algebra 214 (2010), 1334-1339. · Zbl 1193.20071
[5] G. Deng and X. Zeng,Long minimal zero-sum sequences over a finite subset ofZ, Eur. J. Combin. 67 (2018), 78-86. · Zbl 1371.05303
[6] W. Gao and A. Geroldinger,Zero-sum problems in abelian groups: a survey, Expo. Math. 24 (2006), 337-369. · Zbl 1122.11013
[7] A. Geroldinger, D. J. Grynkiewicz, G. J. Schaeffer and W. A. Schmid,On the arithmetic of Krull monoids with infinite cyclic class group, J. Pure Appl. Algebra 214 (2010), 2219-2250. · Zbl 1208.13003
[8] A. Geroldinger and F. Halter-Koch,Non-Unique Factorizations. Algebraic, Combinatorial and Analytic Theory, Pure Appl. Math. 278, Chapman & Hall/CRC, 2006. · Zbl 1113.11002
[9] A. Geroldinger and I. Z. Ruzsa,Combinatorial Number Theory and Additive Group Theory, Adv. Courses Math. CRM Barcelona, Birkhäuser, 2009. · Zbl 1177.11005
[10] B. Girard,An asymptotically tight bound for the Davenport constant, J. École Polytech. Math. 5 (2018), 605-611. · Zbl 1401.05311
[11] D. J. Grynkiewicz,Structural Additive Theory, Dev. Math. 30, Springer, 2013. · Zbl 1368.11109
[12] W. Hassler,Factorization properties of Krull monoids with infinite class group, Colloq. Math. 92 (2002), 229-242. · Zbl 0997.20056
[13] C. Liu,On the lower bounds of Davenport constant, J. Combin. Theory Ser. A 171 (2020), art. 105162, 15 pp. · Zbl 1446.11042
[14] W. Narkiewicz,Elementary and Analytic Theory of Algebraic Numbers, 3rd ed., Springer Monogr. Math., Springer, 2004. · Zbl 1159.11039
[15] A. Plagne and S. Tringali,The Davenport constant of a box, Acta Arith. 171 (2015), 197-219. · Zbl 1384.11042
[16] P. A. Sissokho,A note on minimal zero-sum sequences overZ, Acta Arith. 166 (2014), 279-288. · Zbl 1369.11021
[17] X. Zeng and G. Deng,Minimal zero-sum sequences overJ−m, nK, J. Number Theory 203 (2019), 230-241. · Zbl 1446.11044
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.