×

The Davenport constant of a box. (English) Zbl 1384.11042

Let \(G\) be an additive abelian group and \(X \subseteq G\) a subset. The Davenport constant \(\mathsf D (X)\) of \(X\) is the supremum over all \(\ell \in \mathbb N\) for which there is a minimal zero-sum sequence over \(X\) having length \(\ell\). If \(X=G\) is finite, then \(\mathsf D (G)\) is a central and well-studied invariant in zero-sum theory. If \(X\) is an arbitrary finite subset of an abelian group, then it is easy to see that \(\mathsf D (X)\) is finite too but so far there were no further results in this direction. Recent applications for direct-sum decompositions of modules raised the need for more precise results on \(\mathsf D (X)\) in case of well-structured subsets \(X\) of finitely generated abelian groups, see [N. R. Baeth and A. Geroldinger, Pac. J. Math. 271, No. 2, 257–319 (2014; Zbl 1347.16006)], and [N. R. Baeth et al., J. Algebra Appl. 14, No. 2, 1550016, 60 p. (2015; Zbl 1385.16003)].
The focus of the present paper is on boxes \(X = [-m_1, m_1] \times \ldots \times [-m_d, m_d] \subset \mathbb Z^d = G\). The authors derive lower and upper bounds for \(\mathsf D (X)\) and study the asymptotic behavior of \(\mathsf D (X)\) when the box is growing.

MSC:

11B75 Other combinatorial number theory
11B30 Arithmetic combinatorics; higher degree uniformity
11P70 Inverse problems of additive number theory, including sumsets

References:

[1] [1]P. C. Baayen and P. van Emde Boas, Een structuurconstante bepaald voor C2\oplus C2\oplus C2\oplus C2\oplus C6, Math. Centrum Amsterdam WZ 27 (1969), 6 pp.
[2] [2]N. R. Baeth and A. Geroldinger, Monoids of modules and arithmetic of direct-sum decompositions, Pacific J. Math. 271 (2014), 257–319. · Zbl 1347.16006
[3] [3]N. R. Baeth, A. Geroldinger, D. J. Grynkiewicz and D. Smertnig, A semigrouptheoretical view of direct-sum decompositions and associated combinatorial problems, J. Algebra Appl. 14 (2015), 1550016, 60 pp. · Zbl 1385.16003
[4] [4]R. C. Baker, G. Harman and J. Pintz, The difference between consecutive primes, II, Proc. London Math. Soc. 83 (2001), 532–562. · Zbl 1016.11037
[5] [5]W. Banaszczyk, The Steinitz constant of the plane, J. Reine Angew. Math. 373 (1987), 218–220. · Zbl 0593.15020
[6] [6]W. Banaszczyk, The Steinitz lemma in l2\infty, Period. Math. Hungar. 22 (1991), 183– 186. · Zbl 0745.52001
[7] [7]P. Diaconis, R. L. Graham and B. Sturmfels, Primitive partition identities, in: D. Mikl\'{}os et al. (eds.), Combinatorics, Paul Erd˝os is Eighty, Vol. 2, J\'{}anos Bolyai Math. Soc., Budapest, 1996, 173–192. · Zbl 0852.05014
[8] [8]P. van Emde Boas, A combinatorial problem on finite abelian groups II, Mathematisch Centrum Amsterdam ZW 1969-007 (1969), 60 pp.
[9] [9]P. van Emde Boas and D. Kruyswijk, A combinatorial problem on finite abelian groups III, Math. Centrum Amsterdam ZW 1969-008 (1969), 34 pp.
[10] [10]W. Gao and A. Geroldinger, Zero-sum problems in abelian groups: A survey, Expo. Math. 24 (2006), 337–369. · Zbl 1122.11013
[11] [11]A. Geroldinger, Additive group theory and non-unique factorizations, in: Combinatorial Number Theory and Additive Group Theory, Adv. Courses Math. CRM Barcelona, Birkh\"{}auser, 2009, 1–86. The Davenport constant of a box219 · Zbl 1221.20045
[12] [12]A. Geroldinger, D. J. Grynkiewicz, G. J. Schaeffer and W. A. Schmid, On the arithmetic of Krull monoids with infinite cyclic class groups, J. Pure Appl. Algebra 214 (2010), 2219–2250. · Zbl 1208.13003
[13] [13]A. Geroldinger and F. Halter-Koch, Non-Unique Factorizations: Algebraic, Combinatorial and Analytic Theory, Pure Appl. Math. 278, Chapman & Hall/CRC, 2006. · Zbl 1113.11002
[14] [14]A. Geroldinger and R. Schneider, On Davenport’s constant, J. Combin. Theory Ser. A 61 (1992), 147–152. · Zbl 0759.20008
[15] [15]G. Hoheisel, Primzahlprobleme in der Analysis, Sitz. Preuss. Akad. Wiss. 1930, 580–588. · JFM 56.0172.02
[16] [16]M. I. Kadets and V. M. Kadets, Series in Banach Spaces: Conditional and Unconditional Convergence, Oper. Theory Adv. Appl. 94, Birkh\"{}auser, 1997.
[17] [17]P. L\'{}evy, Sur les s\'{}eries semi-convergentes, Nouv. Ann. de Math. 64 (1905), 506–511.
[18] [18]R. Meshulam, An uncertainty inequality and zero subsums, Discrete Math. 84 (1990), 197–200. · Zbl 0717.11017
[19] [19]J. E. Olson, A combinatorial problem on finite Abelian groups I, J. Number Theory 1 (1969), 8–10. · Zbl 0169.02003
[20] [20]J. E. Olson, A combinatorial problem on finite Abelian groups II, J. Number Theory 1 (1969), 195–199. · Zbl 0167.28004
[21] [21]K. Rogers, A combinatorial problem in Abelian groups, Proc. Cambridge Philos. Soc. 59 (1963), 559–562. · Zbl 0118.03802
[22] [22]M. L. Sahs, P. A. Sissokho and J. N. Torf, A zero-sum theorem over Z, Integers 13 (2013), #A71. · Zbl 1284.11032
[23] [23]P. A. Sissokho, A note on minimal zero-sum sequences over Z, Acta Arith. 166 (2014), 279–288. · Zbl 1369.11021
[24] [24]E. Steinitz, Bedingt konvergente Reihen und konvexe Systeme, J. Reine Angew. Math. 143 (1913), 128–176.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.