×

An optimal 13-point finite difference scheme for a 2D Helmholtz equation with a perfectly matched layer boundary condition. (English) Zbl 1458.65133

Summary: Efficient and accurate numerical schemes for solving the Helmholtz equation are critical to the success of various wave propagation-related inverse problems, for instance, the full-waveform inversion problem. However, the numerical solution to a multi-dimensional Helmholtz equation is notoriously difficult, especially when a perfectly matched layer (PML) boundary condition is incorporated. In this paper, an optimal 13-point finite difference scheme for the Helmholtz equation with a PML in the two-dimensional domain is presented. An error analysis for the numerical approximation of the exact wavenumber is provided. Based on error analysis, the optimal 13-point finite difference scheme is developed so that the numerical dispersion is minimized. Two practical strategies for selecting optimal parameters are presented. Several numerical examples are solved by the new method to illustrate its accuracy and effectiveness in reducing numerical dispersion.

MSC:

65N06 Finite difference methods for boundary value problems involving PDEs
35J05 Laplace operator, Helmholtz equation (reduced wave equation), Poisson equation

Software:

PSP; clique; UMFPACK; CARP-CG
Full Text: DOI

References:

[1] Alford, RM; Kelly, KR; Boore, D., Accuracy of finite-difference modeling of the acoustic wave equation, Geophysics, 39, 6, 834-842 (1974) · doi:10.1190/1.1440470
[2] Bayliss, A.; Goldstein, CI; Turkel, E., On accuracy conditions for the numerical computation of waves, J. Comput. Phys., 59, 3, 396-404 (1985) · Zbl 0647.65072 · doi:10.1016/0021-9991(85)90119-6
[3] Berenger, JP, A perfectly matched layer for the absorption of electromagnetic waves, J. Comput. Phys., 114, 2, 185-200 (1994) · Zbl 0814.65129 · doi:10.1006/jcph.1994.1159
[4] Britt, S.; Tsynkov, S.; Turkel, E., Numerical simulation of time-harmonic waves in inhomogeneous media using compact high order schemes, Commun. Comput. Phys., 9, 3, 520-541 (2011) · Zbl 1364.78034 · doi:10.4208/cicp.091209.080410s
[5] Chen, JB, A generalized optimal 9-point scheme for frequency-domain scalar wave equation, J. Appl. Geophys., 92, 1-7 (2013) · doi:10.1016/j.jappgeo.2013.02.008
[6] Chen, Z., Cheng, D., Feng, W., Wu, T.: An optimal 9-point finite difference scheme for the Helmholtz equation with PML. International Journal of Numerical Analysis & Modeling 10(2) (2013) · Zbl 1272.65081
[7] Chen, Z.; Cheng, D.; Wu, T., A dispersion minimizing finite difference scheme and preconditioned solver for the 3D Helmholtz equation, J. Comput. Phys., 231, 24, 8152-8175 (2012) · Zbl 1284.35145 · doi:10.1016/j.jcp.2012.07.048
[8] Cheng, D.; Tan, X.; Zeng, T., A dispersion minimizing finite difference scheme for the Helmholtz equation based on point-weighting, Comput. Math. Appl., 73, 11, 2345-2359 (2017) · Zbl 1373.65077 · doi:10.1016/j.camwa.2017.04.005
[9] Collino, F.; Monk, PB, Optimizing the perfectly matched layer, Comput. Methods Appl. Mech. Eng., 164, 1-2, 157-171 (1998) · Zbl 1040.78524 · doi:10.1016/S0045-7825(98)00052-8
[10] Dastour, H.; Liao, W., A fourth-order optimal finite difference scheme for the Helmholtz equation with PML, Comput. Math. Appl., 6, 78, 2147-2165 (2019) · Zbl 1442.65323 · doi:10.1016/j.camwa.2019.05.004
[11] Davis, TA, Algorithm 832: UMFPACK v4. 3—an unsymmetric-pattern multifrontal method, ACM Trans. Math. Softw. (TOMS), 30, 2, 196-199 (2004) · Zbl 1072.65037 · doi:10.1145/992200.992206
[12] Davis, TA; Duff, IS, An unsymmetric-pattern multifrontal method for sparse lu factorization, SIAM J. Matrix Anal. Appl., 18, 1, 140-158 (1997) · Zbl 0884.65021 · doi:10.1137/S0895479894246905
[13] De Zeeuw, PM, Matrix-dependent prolongations and restrictions in a blackbox multigrid solver, J. Comput. Appl. Math., 33, 1, 1-27 (1990) · Zbl 0717.65099 · doi:10.1016/0377-0427(90)90252-U
[14] Engquist, B.; Majda, A., Absorbing boundary conditions for numerical simulation of waves, Proc. Natl. Acad. Sci., 74, 5, 1765-1766 (1977) · Zbl 0378.76018 · doi:10.1073/pnas.74.5.1765
[15] Engquist, B.; Ying, L., Sweeping preconditioner for the Helmholtz equation: moving perfectly matched layers, Multiscale Model. Simul., 9, 2, 686-710 (2011) · Zbl 1228.65234 · doi:10.1137/100804644
[16] Erlangga, YA; Oosterlee, CW; Vuik, C., A novel multigrid based preconditioner for heterogeneous Helmholtz problems, SIAM J. Sci. Comput., 27, 4, 1471-1492 (2006) · Zbl 1095.65109 · doi:10.1137/040615195
[17] van Gijzen, MB; Erlangga, YA; Vuik, C., Spectral analysis of the discrete Helmholtz operator preconditioned with a shifted Laplacian, SIAM J. Sci. Comput., 29, 5, 1942-1958 (2007) · Zbl 1155.65088 · doi:10.1137/060661491
[18] Gordon, D.; Gordon, R., Carp-cg: A robust and efficient parallel solver for linear systems, applied to strongly convection dominated pdes, Parallel Comput., 36, 9, 495-515 (2010) · Zbl 1195.65062 · doi:10.1016/j.parco.2010.05.004
[19] Harari, I.; Turkel, E., Accurate finite difference methods for time-harmonic wave propagation, J. Comput. Phys., 119, 2, 252-270 (1995) · Zbl 0848.65072 · doi:10.1006/jcph.1995.1134
[20] Ihlenburg, F.; Babuška, I., Dispersion analysis and error estimation of Galerkin finite element methods for the Helmholtz equation, Int. J. Numer. Methods Eng., 38, 22, 3745-3774 (1995) · Zbl 0851.73062 · doi:10.1002/nme.1620382203
[21] Ihlenburg, F.; Babuška, I., Finite element solution of the Helmholtz equation with high wave number part i: The h-version of the fem, Comput. Math. Appl., 30, 9, 9-37 (1995) · Zbl 0838.65108 · doi:10.1016/0898-1221(95)00144-N
[22] Jo, CH; Shin, C.; Suh, JH, An optimal 9-point, finite-difference, frequency-space, 2-D scalar wave extrapolator, Geophysics, 61, 2, 529-537 (1996) · doi:10.1190/1.1443979
[23] Medvinsky, M.; Turkel, E.; Hetmaniuk, U., Local absorbing boundary conditions for elliptical shaped boundaries, J. Comput. Phys., 227, 18, 8254-8267 (2008) · Zbl 1147.65087 · doi:10.1016/j.jcp.2008.05.010
[24] Nabavi, M.; Siddiqui, MK; Dargahi, J., A new 9-point sixth-order accurate compact finite-difference method for the Helmholtz equation, J. Sound Vib., 307, 3-5, 972-982 (2007) · doi:10.1016/j.jsv.2007.06.070
[25] Operto, S.; Virieux, J.; Amestoy, P.; L’Excellent, JY; Giraud, L.; Ali, HBH, 3D finite-difference frequency-domain modeling of visco-acoustic wave propagation using a massively parallel direct solver: A feasibility study, Geophysics, 72, 5, SM195-SM211 (2007) · doi:10.1190/1.2759835
[26] Poulson, J.; Engquist, B.; Li, S.; Ying, L., A parallel sweeping preconditioner for heterogeneous 3D Helmholtz equations, SIAM J. Sci. Comput., 35, 3, C194-C212 (2013) · Zbl 1275.65073 · doi:10.1137/120871985
[27] Pratt, RG; Worthington, MH, Inverse theory applied to multi-source cross-hole tomography. Part 1: Acoustic wave-equation method, Geophys. Prospect., 38, 3, 287-310 (1990) · doi:10.1111/j.1365-2478.1990.tb01846.x
[28] Shin, C.; Sohn, H., A frequency-space 2-D scalar wave extrapolator using extended 25-point finite-difference operator, Geophysics, 63, 1, 289-296 (1998) · doi:10.1190/1.1444323
[29] Singer, I.; Turkel, E., High-order finite difference methods for the Helmholtz equation, Comput. Methods Appl. Mech. Eng., 163, 1-4, 343-358 (1998) · Zbl 0940.65112 · doi:10.1016/S0045-7825(98)00023-1
[30] Singer, I.; Turkel, E., A perfectly matched layer for the Helmholtz equation in a semi-infinite strip, J. Comput. Phys., 201, 2, 439-465 (2004) · Zbl 1061.65109 · doi:10.1016/j.jcp.2004.06.010
[31] Sutmann, G., Compact finite difference schemes of sixth order for the Helmholtz equation, J. Comput. Appl. Math., 203, 1, 15-31 (2007) · Zbl 1112.65099 · doi:10.1016/j.cam.2006.03.008
[32] Trefethen, LN, Group velocity in finite difference schemes, SIAM Rev., 24, 2, 113-136 (1982) · Zbl 0487.65055 · doi:10.1137/1024038
[33] Turkel, E.; Gordon, D.; Gordon, R.; Tsynkov, S., Compact 2D and 3D sixth order schemes for the Helmholtz equation with variable wave number, J. Comput. Phys., 232, 1, 272-287 (2013) · Zbl 1291.65273 · doi:10.1016/j.jcp.2012.08.016
[34] Turkel, E.; Yefet, A., Absorbing PML boundary layers for wave-like equations, Appl. Numer. Math., 27, 4, 533-557 (1998) · Zbl 0933.35188 · doi:10.1016/S0168-9274(98)00026-9
[35] Virieux, J.; Operto, S., An overview of full-waveform inversion in exploration geophysics, Geophysics, 74, 6, WCC1-WCC26 (2009) · doi:10.1190/1.3238367
[36] Wang, S., An improved high order finite difference method for non-conforming grid interfaces for the wave equation, J. Sci. Comput., 77, 2, 775-792 (2018) · Zbl 1407.65132 · doi:10.1007/s10915-018-0723-9
[37] Wu, T., A dispersion minimizing compact finite difference scheme for the 2D Helmholtz equation, J. Comput. Appl. Math., 311, 497-512 (2017) · Zbl 1352.65426 · doi:10.1016/j.cam.2016.08.018
[38] Wu, T.; Xu, R., An optimal compact sixth-order finite difference scheme for the Helmholtz equation, Comput. Math. Appl., 75, 7, 2520-2537 (2018) · Zbl 1409.78008 · doi:10.1016/j.camwa.2017.12.023
[39] Zeng, Y.; He, J.; Liu, Q., The application of the perfectly matched layer in numerical modeling of wave propagation in poroelastic media, Geophysics, 66, 4, 1258-1266 (2001) · doi:10.1190/1.1487073
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.