×

Sheet metal forming and springback simulation by means of a new reduced integration solid-shell finite element technology. (English) Zbl 1225.74107

Summary: The paper deals with the validation of a recently proposed hexahedral solid-shell finite element in the field of sheet metal forming. Working with one integration point in the shell plane and an arbitrary number of integration points in thickness direction, highly non-linear stress states over the sheet thickness can be incorporated in an efficient way. In order to avoid volumetric locking and Poisson thickness locking at the level of integration points the enhanced assumed strain (EAS) concept with only one EAS degree-of-freedom is implemented. A key point of the formulation is the construction of the hourglass stabilization by means of different Taylor expansions. This leads to the advantage that the sensitivity with respect to mesh distortion is noticeably reduced. The hourglass stabilization includes the assumed natural strain (ANS) concept and a kind of B-Bar method. So transverse shear locking and volumetric locking are eliminated.The finite element formulation incorporates a finite strain material model for plastic anisotropy as well as non-linear (Armstrong – Frederick type) kinematic and isotropic hardening. In this context the plastic anisotropy can be modeled by representing the yield surface and the plastic flow rule as functions of so-called structural tensors. The integration of the evolution equations is performed by means of an exponential map exploiting the spectral decomposition. The element formulation and material model have been implemented into the commercial code ABAQUS/Standard by means of the UEL interface for user-defined elements. Using an implicit time integration scheme numerical results for classical deep drawing simulations as well as springback predictions are presented in comparison to experimental measurements.

MSC:

74S05 Finite element methods applied to problems in solid mechanics
74C15 Large-strain, rate-independent theories of plasticity (including nonlinear plasticity)
74K25 Shells
Full Text: DOI

References:

[1] ABAQUS/Standard, User’s Manual (v6.8), ABAQUS, Inc., 2008.; ABAQUS/Standard, User’s Manual (v6.8), ABAQUS, Inc., 2008.
[2] Alves de Sousa, R. J.; Cardoso, R. P.R.; Fontes Valente, R. A.; Yoon, J.-W.; Grácio, J. J.; Natal Jorge, R. M., A new one-point quadrature enhanced assumed strain (EAS) solid-shell element with multiple integration points along thickness—Part II: Nonlinear applications, Int. J. Numer. Methods Engrg., 67, 160-188 (2006) · Zbl 1110.74840
[3] Alves de Sousa, R. J.; Yoon, J. W.; Cardoso, R. P.R.; Fontes Valente, R. A.; Grácio, J. J., On the use of a reduced enhanced solid-shell (RESS) element for sheet forming simulations, Int. J. Plasticity, 23, 490-515 (2007) · Zbl 1349.74314
[4] Ambrogio, G.; Costantino, I.; de Napoli, L.; Filice, L.; Fratini, L.; Muzzupappa, M., Influence of some relevant process parameters on the dimensional accuracy in incremental forming: a numerical and experimental investigation, J. Mater. Process. Technol., 153-154, 501-507 (2004)
[5] Banabic, D.; Kuwabara, T.; Balan, T.; Comsa, D. S.; Julean, D., Non-quadratic yield criterion for orthotropic sheet metals under plane-stress conditions, Int. J. Mech. Sci., 45, 797-811 (2003) · Zbl 1042.74507
[6] Belytschko, T.; Bindeman, L. P., Assumed strain stabilization of the eight node hexahedral element, Comput. Methods Appl. Mech. Engrg., 105, 225-260 (1993) · Zbl 0781.73061
[7] Belytschko, T.; Lin, J. I.; Tsay, C.-S., Explicit algorithms for the nonlinear dynamics of shells, Comput. Methods Appl. Mech. Engrg., 42, 225-251 (1984) · Zbl 0512.73073
[8] Betsch, P.; Stein, E., An assumed strain approach avoiding artificial thickness straining for a non-linear 4-node shell element, Commun. Numer. Methods Engrg., 11, 899-909 (1995) · Zbl 0833.73051
[9] Bischoff, M.; Ramm, E., Shear deformable shell elements for large strains and rotations, Int. J. Numer. Methods Engrg., 40, 4427-4449 (1997) · Zbl 0892.73054
[10] Boogaard, A. H.; Meinders, T.; Huétink, J., Efficient implicit finite element analysis of sheet forming processes, Int. J. Numer. Methods Engrg., 56, 1083-1107 (2003) · Zbl 1078.74669
[11] Bouvier, S.; Alves, J. L.; Oliveira, M. C.; Menezes, L. F., Modelling of anisotropic work-hardening behaviour of metallic materials subjected to strain-path changes, Comput. Mater. Sci., 32, 301-315 (2005)
[12] Brank, B.; Korelc, J.; Ibrahimbegović, A., Nonlinear shell problem formulation accounting for through-the-thickness stretching and its finite element implementation, Comput. Struct., 80, 699-717 (2002)
[13] Burchitz, I. A.; Meinders, T., Adaptive through-thickness integration for accurate springback prediction, Int. J. Numer. Methods Engrg., 75, 533-554 (2008) · Zbl 1195.74163
[14] Carden, W. D.; Geng, L. M.; Matlock, D. K.; Wagoner, R. H., Measurement of springback, Int. J. Mech. Sci., 44, 79-101 (2002) · Zbl 0986.74503
[15] Cardoso, R. P.R.; Yoon, J. W., One point quadrature shell element with through-thickness stretch, Comput. Methods Appl. Mech. Engrg., 194, 1161-1199 (2005) · Zbl 1106.74056
[16] Cardoso, R. P.R.; Yoon, J. W.; Mahardika, M.; Choudhry, S.; Alves de Sousa, R. J.; Fontes Valente, R. A., Enhanced assumed strain (EAS) and assumed natural strain (ANS) methods for one-point quadrature solid-shell elements, Int. J. Numer. Methods Engrg., 75, 156-187 (2008) · Zbl 1195.74165
[17] César de Sá, J. M.A.; Natal Jorge, R. M.; Fontes Valente, R. A.; Areias, P. M.A., Development of shear locking-free shell elements using an enhanced assumed strain formulation, Int. J. Numer. Methods Engrg., 53, 1721-1750 (2002) · Zbl 1114.74484
[18] Choi, Y.; Han, C.-S.; Lee, J. K.; Wagoner, R. H., Modeling multi-axial deformation of planar anisotropic elasto-plastic materials. Part I: Theory, Int. J. Plasticity, 22, 1745-1764 (2006) · Zbl 1294.74025
[19] Chung, K.; Lee, M.-G.; Kim, D.; Kim, C.; Wenner, M. L.; Barlat, F., Spring-back evaluation of automotive sheet based on isotropic-kinematic hardening laws and non-quadratic anisotropic yield functions. Part I: Theory and formulation, Int. J. Plasticity, 21, 861-882 (2005) · Zbl 1161.74331
[20] Fontes Valente, R. A.; Alves de Sousa, R. J.; Natal Jorge, R. M., An enhanced strain 3D element for large deformation elastoplastic thin-shell applications, Comput. Mech., 34, 38-52 (2004) · Zbl 1141.74367
[21] Fontes Valente, R. A.; Parente, M. P.L.; Natal Jorge, R. M.; César de Sá, J. M.A.; Grácio, J. J., Enhanced transverse shear strain shell formulation applied to large elasto-plastic deformation problems, Int. J. Numer. Methods Engrg., 62, 1360-1398 (2005) · Zbl 1078.74657
[22] Fourment, L.; Balan, T.; Chenot, J. L., Optimal design for non-steady-state metal forming processes—II. Application of shape optimization in forging, Int. J. Numer. Methods Engrg., 39, 51-65 (1996) · Zbl 0882.73047
[23] Fourment, L.; Chenot, J. L.; Mocellin, K., Numerical formulations and algorithms for solving contact problems in metal forming simulation, Int. J. Numer. Methods Engrg., 46, 1435-1462 (1999) · Zbl 0990.74044
[24] Frey, W. H.; Wenner, M. L., Development and application of a one-dimensional finite element code for sheet metal forming, (Samanta, S. K.; Komanduri, D.; McMeeking, R.; Chen, M. N.; Tseng, A., Interdiciplinary Issues in Material Processing and Manufacturing (1987), ASME: ASME New York), 307-320
[25] Frisch-Fay, R., Flexible Bars (1962), Butterworth and Co. Limited · Zbl 0124.18001
[26] Gruttmann, F.; Wagner, W., A stabilized one-point integrated quadrilateral Reissner-Mindlin plate element, Int. J. Numer. Methods Engrg., 61, 2273-2295 (2004) · Zbl 1075.74646
[27] Haddadi, H.; Bouvier, S.; Banu, M.; Maier, C.; Teodosiu, C., Towards an accurate description of the anisotropic behaviour of sheet metals under large plastic deformations: modelling, numerical analysis and identification, Int. J. Plasticity, 22, 2226-2271 (2006) · Zbl 1230.74051
[28] Haddag, B.; Balan, T.; Abed-Meraim, F., Investigation of advanced strain-path dependent material models for sheet metal forming simulations, Int. J. Plasticity, 23, 951-979 (2007) · Zbl 1148.74313
[29] Hama, T.; Nagata, T.; Teodosiu, C.; Makinouchi, A.; Takuda, H., Finite-element simulation of springback in sheet metal forming using local interpolation for tool surfaces, Int. J. Mech. Sci., 50, 175-192 (2008) · Zbl 1264.74263
[30] Harewood, F. J.; McHugh, P. E., Comparison of the implicit and explicit finite element methods using crystal plasticity, Comput. Mater. Sci., 39, 481-494 (2007)
[31] Harnau, M.; Schweizerhof, K., About linear and quadratic “solid-shell” elements at large deformations, Comput. Struct., 80, 805-817 (2002)
[32] Harnau, M.; Schweizerhof, K., Artificial kinematics and simple stabilization of solid-shell elements occurring in highly constrained situations and applications in composite sheet forming simulation, Finite Elem. Anal. Des., 42, 1097-1111 (2006)
[33] Hauptmann, R.; Schweizerhof, K., A systematic development of ’solid-shell’ element formulations for linear and non-linear analyses employing only displacement degrees of freedom, Int. J. Numer. Methods Engrg., 42, 49-69 (1998) · Zbl 0917.73067
[34] Hauptmann, R.; Schweizerhof, K.; Doll, S., Extension of the ’solid-shell’ concept for application to large elastic and large elastoplastic deformations, Int. J. Numer. Methods Engrg., 49, 1121-1141 (2000) · Zbl 1048.74041
[35] Hill, R., A theory of the yielding and plastic flow of anisotropic metals, Proc. Royal Soc. Lond. Ser. A, Math. Phys. Sci., 193, 281-297 (1948) · Zbl 0032.08805
[36] Huh, H.; Kim, S.-H., Optimum process design in sheet-metal forming with finite element analysis, J. Engrg. Mater. Technol., 123, 476-482 (2001)
[37] Jung, D. W.; Yang, D. Y., Step-wise combined implicit-explicit finite-element simulation of autobody stamping processes, J. Mater. Process. Technol., 83, 245-260 (1998)
[38] Karafillis, A. P.; Boyce, M. C., Tooling and binder design for sheet metal forming processes compensating springback error, Int. J. Mach. Tools Manufact., 36, 503-526 (1996)
[39] Khoei, A. R.; Jamali, N., On the implementation of a multi-surface kinematic hardening plasticity and its applications, Int. J. Plasticity, 21, 1741-1770 (2005) · Zbl 1114.74376
[40] Kim, D.-N.; Bathe, K.-J., A 4-node 3D-shell element to model shell surface tractions and incompressible behavior, Comput. Struct., 86, 2027-2041 (2008)
[41] Kim, J.; Kang, Y.-H.; Choi, H.-H.; Hwang, S.-M.; Kang, B.-S., Comparison of implicit and explicit finite-element methods for the hydroforming process of an automobile lower arm, Int. J. Adv. Manufact. Technol., 20, 407-413 (2002)
[42] Kim, J. B.; Yoon, J. W.; Yang, D. Y., Investigation into the wrinkling behaviour of thin sheets in the cylindrical cup deep drawing process using bifurcation theory, Int. J. Numer. Methods Engrg., 56, 1673-1705 (2003) · Zbl 1155.74410
[43] Kim, K. D.; Liu, G. Z.; Han, S. C., A resultant 8-node solid-shell element for geometrically nonlinear analysis, Comput. Mech., 35, 315-331 (2005) · Zbl 1109.74360
[44] Kim, S.-H.; Kim, S.-H.; Huh, H., Tool design in a multi-stage drawing and ironing process of a rectangular cup with a large aspect ratio using finite element analysis, Int. J. Mach. Tools Manufact., 42, 863-875 (2002)
[45] Kim, T.-J.; Yang, D.-Y., FE-analysis of sheet metal forming processes using continuous contact treatment, Int. J. Plasticity, 23, 544-560 (2007) · Zbl 1146.74051
[46] M. Kleiner, M. Schikorra, R. Govindarajan, A. Brosius , Springback analysis of sheet metals regarding material hardening, in: M. Geiger, J. Duflou, H.J.J. Kals, B. Shirvani, U.P. Singh (Eds.), Proceedings of the 11th International Conference on Sheet Metal, 2005, pp. 712-728.; M. Kleiner, M. Schikorra, R. Govindarajan, A. Brosius , Springback analysis of sheet metals regarding material hardening, in: M. Geiger, J. Duflou, H.J.J. Kals, B. Shirvani, U.P. Singh (Eds.), Proceedings of the 11th International Conference on Sheet Metal, 2005, pp. 712-728.
[47] Klinkel, S.; Govindjee, S., Using finite strain 3D-material models in beam and shell elements, Engrg. Comput., 19, 254-271 (2002) · Zbl 1183.74288
[48] Klinkel, S.; Gruttmann, F.; Wagner, W., A robust non-linear solid shell element based on a mixed variational formulation, Comput. Methods Appl. Mech. Engrg., 195, 179-201 (2006) · Zbl 1106.74058
[49] Klinkel, S.; Gruttmann, F.; Wagner, W., A mixed shell formulation accounting for thickness strains and finite strain 3D material models, Int. J. Numer. Methods Engrg., 74, 945-970 (2008) · Zbl 1158.74491
[50] Krstulović-Opara, L.; Wriggers, P.; Korelc, J., A \(C^1\)-continuous formulation for 3D finite deformation frictional contact, Comput. Mech., 29, 27-42 (2002) · Zbl 1076.74555
[51] Kuwabara, T.; Ikeda, S.; Kuroda, M., Measurement and analysis of differential work hardening in cold-rolled steel sheet under biaxial tension, J. Mater. Process. Technol., 80/81, 517-523 (1998)
[52] J.K. Lee, G.L. Kinzel, R.H. Wagoner (Eds.), NUMISHEET 1996, Proceedings of the 3th International Conference and Workshop on Numerical Simulation of 3D Sheet Forming Processes - Verification of Simulation with Experiment, Dearborn, Michigan, USA, 1996.; J.K. Lee, G.L. Kinzel, R.H. Wagoner (Eds.), NUMISHEET 1996, Proceedings of the 3th International Conference and Workshop on Numerical Simulation of 3D Sheet Forming Processes - Verification of Simulation with Experiment, Dearborn, Michigan, USA, 1996.
[53] Lee, M. G.; Kim, S. J.; Wagoner, R. H.; Chung, K.; Kim, H. Y., Constitutive modeling for anisotropic/asymmetric hardening behavior of magnesium alloy sheets: application to sheet springback, Int. J. Plasticity, 25, 70-104 (2009) · Zbl 1277.74014
[54] Lee, M.-G.; Kim, D.; Kim, C.; Wenner, M. L.; Wagoner, R. H.; Chung, K., A practical two-surface plasticity model and its application to spring-back prediction, Int. J. Plasticity, 23, 1189-1212 (2007) · Zbl 1294.74018
[55] Lee, M.-G.; Kim, D.; Kim, C.; Wagoner, R. H.; Wenner, M. L.; Chung, K., Spring-back evaluation of automotive sheets based on isotropic-kinematic hardening laws and non-quadratic anisotropic yield functions. Part II: Characterization of material properties, Int. J. Plasticity, 21, 883-914 (2005) · Zbl 1161.74340
[56] Lee, M.-G.; Kim, D.; Kim, C.; Wenner, M. L.; Chung, K., Spring-back evaluation of automotive sheets based on isotropic-kinematic hardening laws and non-quadratic anisotropic yield functions. Part III: Applications, Int. J. Plasticity, 21, 915-953 (2005) · Zbl 1161.74339
[57] Lee, M.-G.; Wagoner, R. H.; Lee, J. K.; Chung, K.; Kim, H. Y., Constitutive modeling for anisotropic/asymmetric hardening behavior of magnesium alloy sheets, Int. J. Plasticity, 24, 545-582 (2008) · Zbl 1214.74004
[58] Li, K. P.; Carden, W. P.; Wagoner, R. H., Simulation of springback, Int. J. Mech. Sci., 44, 103-122 (2002) · Zbl 0986.74522
[59] R.A. Lingbeek, T. Meinders, Towards efficient modelling of macro and micro tool deformations in sheet metal forming, Materials Processing and design: modeling, simulation and applications, in: Proceedings of the 9th International Conference on Industrial Forming Processes, 2007, pp. 723-728.; R.A. Lingbeek, T. Meinders, Towards efficient modelling of macro and micro tool deformations in sheet metal forming, Materials Processing and design: modeling, simulation and applications, in: Proceedings of the 9th International Conference on Industrial Forming Processes, 2007, pp. 723-728.
[60] Lion, A., Constitutive modelling in finite thermoviscoplasticity: a physical approach based on nonlinear rheological models, Int. J. Plasticity, 16, 469-494 (2000) · Zbl 0996.74022
[61] A. Makinouchi, E. Nakamachi, E. Oñate, R.H. Wagoner (Eds.), NUMISHEET 1993, Proceedings of the 2nd International Conference and Workshop on Numerical Simulation of 3D Sheet Forming Processes - Verification of Simulation with Experiment, Isehara, Japan, 1993.; A. Makinouchi, E. Nakamachi, E. Oñate, R.H. Wagoner (Eds.), NUMISHEET 1993, Proceedings of the 2nd International Conference and Workshop on Numerical Simulation of 3D Sheet Forming Processes - Verification of Simulation with Experiment, Isehara, Japan, 1993. · Zbl 0992.74500
[62] Meinders, T.; van den Boogaard, A. H.; Huétink, J., Improvement of implicit finite element code performance in deep drawing simulations by dynamics contributions, J. Mater. Process. Technol., 134, 413-420 (2003)
[63] Naceur, H.; Guo, Y. Q.; Batoz, J. L.; Knopf-Lenoir, C., Optimization of drawbead restraining forces and drawbead design in sheet metal forming process, Int. J. Mech. Sci., 43, 2407-2434 (2001) · Zbl 0988.74532
[64] Narasimhan, N.; Lovell, M., Predicting springback in sheet metal forming: an explicit to implicit sequential solution procedure, Finite Elem. Anal. Des., 33, 29-42 (1999) · Zbl 0954.74067
[65] Noels, L.; Stainier, L.; Ponthot, J.-P., Combined implicit/explicit time-integration algorithms for the numerical simulation of sheet metal forming, J. Comput. Appl. Math., 168, 331-339 (2004) · Zbl 1107.74344
[66] Noels, L.; Stainier, L.; Ponthot, J.-P., Energy conserving balance of explicit time steps to combine implicit and explicit algorithms in structural dynamics, Comput. Methods Appl. Mech. Engrg., 195, 2169-2192 (2006) · Zbl 1118.74023
[67] Oliveira, M. C.; Alves, J. L.; Chaparro, B. M.; Menezes, L. F., Study on the influence of work-hardening modeling in springback prediction, Int. J. Plasticity, 23, 516-543 (2007) · Zbl 1349.74333
[68] Papeleux, L.; Ponthot, J.-P., Finite element simulation of springback in sheet metal forming, J. Mater. Process. Technol., 785-791 (2002)
[69] Parente, M. P.L.; Fontes Valente, R. A.; Natal Jorge, R. M.; Cardoso, R. P.R.; Alves de Sousa, R. J., Sheet metal forming simulation using EAS solid-shell finite elements, Finite Elem. Anal. Des., 42, 1137-1149 (2006)
[70] Parisch, H., A continuum-based shell theory for non-linear applications, Int. J. Numer. Methods Engrg., 38, 1855-1883 (1995) · Zbl 0826.73041
[71] Puso, M. A.; Laursen, T. A., A 3D contact smoothing method using Gregory patches, Int. J. Numer. Methods Engrg., 54, 1161-1194 (2002) · Zbl 1098.74711
[72] Quy, N. D.; Matzenmiller, A., A solid-shell element with enhanced assumed strains for higher order shear deformations in laminates, Tech. Mech., 28, 334-355 (2008)
[73] Reese, S., A large deformation solid-shell concept based on reduced integration with hourglass stabilization, Int. J. Numer. Methods Engrg., 69, 1671-1716 (2007) · Zbl 1194.74469
[74] Reese, S.; Christ, D., Finite deformation pseudo-elasticity of shape memory alloys – constitutive modelling and finite element implementation, Int. J. Plasticity, 24, 455-482 (2008) · Zbl 1145.74005
[75] Reese, S.; Svendsen, B.; Stiemer, M.; Unger, J.; Schwarze, M.; Blum, H., On a new finite element technology for electromagnetic metal forming processes, Arch. Appl. Mech., 74, 834-845 (2005) · Zbl 1133.74327
[76] Saxena, R. K.; Dixit, P. M., Finite element simulation of earing defect in deep drawing, Int. J. Adv. Manufact. Technol. (2009)
[77] Schenk, O.; Hillmann, M., Optimal design of metal forming die surfaces with evolution strategies, Comput. Struct., 82, 1695-1705 (2004)
[78] Schwarze, M.; Reese, S., A reduced integration solid-shell element based on the EAS and the ANS concept—geometrically linear problems, Int. J. Numer. Methods Engrg., 80, 1322-1355 (2009) · Zbl 1183.74315
[79] M. Schwarze, S. Reese, A reduced integration solid-shell element based on the EAS and the ANS concept—large deformation problems, Int. J. Numer. Methods Engrg., doi:10.1002/nme.2966; M. Schwarze, S. Reese, A reduced integration solid-shell element based on the EAS and the ANS concept—large deformation problems, Int. J. Numer. Methods Engrg., doi:10.1002/nme.2966 · Zbl 1217.74135
[80] Simo, J. C.; Armero, F., Geometrically non-linear enhanced strain mixed methods and the method of incompatible modes, Int. J. Numer. Methods Engrg., 33, 1413-1449 (1992) · Zbl 0768.73082
[81] Simo, J. C.; Armero, F.; Taylor, R. L., Improved versions of assumed enhanced strain tri-linear elements for 3D finite deformation problems, Comput. Methods Appl. Mech. Engrg., 110, 359-386 (1993) · Zbl 0846.73068
[82] Simo, J. C.; Kennedy, J. G., On a stress resultant geometrically exact shell model. Part V. Nonlinear plasticity: formulation and integration algorithms, Comput. Methods Appl. Mech. Engrg., 96, 133-171 (1992) · Zbl 0754.73042
[83] Steinmann, P.; Betsch, P.; Stein, E., FE plane stress analysis incorporating arbitrary 3D large strain constitutive models, Engrg. Comput., 14, 175-201 (1997) · Zbl 0983.74560
[84] Sun, J. S.; Lee, K. H.; Lee, H. P., Comparison of implicit and explicit finite element methods for dynamic problems, J. Mater. Process. Technol., 105, 110-118 (2000)
[85] Svendsen, B.; Levkovitch, V.; Wang, J.; Reusch, F.; Reese, S., Application of the concept of evolving structure tensors to the modeling of initial and induced anisotropy at large deformation, Comput. Struct., 84, 1077-1085 (2006)
[86] Taherizadeh, A.; Green, D. E.; Ghaei, A.; Yoon, J.-W., A non-associated constitutive model with mixed iso-kinematic hardening for finite element simulation of sheet metal forming, Int. J. Plasticity (2009)
[87] Tan, X. G.; Vu-Quoc, L., Efficient and accurate multilayer solid-shell element: non-linear materials at finite strain, Int. J. Numer. Methods Engrg., 63, 2124-2170 (2005) · Zbl 1134.74414
[88] Unger, J.; Stiemer, M.; Schwarze, M.; Svendsen, B.; Blum, H.; Reese, S., Strategies for 3D simulation of electromagnetic forming processes, J. Mater. Process. Technol., 199, 341-362 (2008)
[89] Vallance, D. W.; Matlock, D. K., Application of the bending-under-tension friction test to coated sheet steels, J. Mater. Engrg. Perform., 1, 685-694 (1992)
[90] M. van Riel, A.H. van den Boogaard, Consistent plane stress-3D conversion of hardening models and yield criteria, in: E. Oñate, D.R.J. Owen (Eds.), IX International Conference on Computational Plasticity, COMPLAS IX, CIMNE, Parcelona, 2007.; M. van Riel, A.H. van den Boogaard, Consistent plane stress-3D conversion of hardening models and yield criteria, in: E. Oñate, D.R.J. Owen (Eds.), IX International Conference on Computational Plasticity, COMPLAS IX, CIMNE, Parcelona, 2007.
[91] Vladimirov, I. N.; Pietryga, M. P.; Reese, S., On the modelling of non-linear kinematic hardening at finite strains with application to springback—comparison of time integration algorithms, Int. J. Numer. Methods Engrg., 75, 1-28 (2008) · Zbl 1195.74019
[92] Vladimirov, I. N.; Pietryga, M. P.; Reese, S., Anisotropic finite elastoplasticity with nonlinear kinematic and isotropic hardening and application to sheet metal forming, Int. J. Plasticity, 26, 659-687 (2010) · Zbl 1426.74073
[93] Vu-Quoc, L.; Tan, X. G., Optimal solid shells for non-linear analyses of multilayer composites. I. Statics, Comput. Methods Appl. Mech. Engrg., 192, 975-1016 (2003) · Zbl 1091.74524
[94] Wagoner, R. H.; Li, M., Simulation of springback: through-thickness integration, Int. J. Plasticity, 23, 345-360 (2007) · Zbl 1349.74378
[95] Wang, J.; Levkovitch, V.; Reusch, F.; Svendsen, B.; Huétink, J.; van Riel, M., On the modeling of hardening in metals during non-proportional loading, Int. J. Plasticity, 24, 1039-1070 (2008) · Zbl 1421.74018
[96] J. Wang, V. Levkovitch, B. Svendsen, On some numerical aspects of the simulation of sheet metal forming and springback, J. Mater. Process. Technol., submitted for publication.; J. Wang, V. Levkovitch, B. Svendsen, On some numerical aspects of the simulation of sheet metal forming and springback, J. Mater. Process. Technol., submitted for publication.
[97] Weili, X.; Yuying, Y.; Wang, Z. R.; Zhongqin, L., A new contact judgement method for sheet metal forming simulation, J. Mater. Process. Technol., 100, 219-223 (2000)
[98] Xu, W. L.; Ma, C. H.; Li, C. H.; Feng, W. J., Sensitive factors in springback simulation for sheet metal forming, J. Mater. Process. Technol., 151, 217-222 (2004)
[99] Yang, D. Y.; Jung, D. W.; Song, I. S.; Yoo, D. J.; Lee, J. H., Comparative investigation into implicit, explicit, and iterative implicit/explicit schemes for the simulation of sheet-metal forming processes, J. Mater. Process. Technol., 50, 39-53 (1995)
[100] D.-Y. Yang, S.I. Oh, H. Huh, Y.H. Kim (Eds.), NUMISHEET 2002, Proceedings of the 5th International Conference and Workshop on Numerical Simulation of 3D Sheet Forming Processes - Verification of Simulation with Experiment, Jeju Island, Korea, 2002.; D.-Y. Yang, S.I. Oh, H. Huh, Y.H. Kim (Eds.), NUMISHEET 2002, Proceedings of the 5th International Conference and Workshop on Numerical Simulation of 3D Sheet Forming Processes - Verification of Simulation with Experiment, Jeju Island, Korea, 2002.
[101] Yoon, J.-W.; Barlat, F.; Dick, R. E.; Chung, K.; Kang, T. J., Plane stress yield function for aluminum alloy sheets—Part II: FE formulation and its implementation, Int. J. Plasticity, 20, 495-522 (2004) · Zbl 1254.74113
[102] Yoon, J.-W.; Pourboghrat, F.; Chung, K.; Yang, D.-Y., Springback prediction for sheet metal forming process using a 3D hybrid membrane/shell method, Int. J. Mech. Sci., 44, 2133-2153 (2002) · Zbl 1087.74644
[103] Yoshida, F.; Uemori, T., A model of large-strain cyclic plasticity and its application to springback simulation, Int. J. Mech. Sci., 45, 1687-1702 (2003) · Zbl 1049.74014
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.