×

Variational constitutive updates for microstructure evolution in hcp metals. (English) Zbl 1255.74053

Summary: Magnesium and its alloys are promising materials for lightweight applications. Unfortunately, the macroscopic formability of such materials is relatively poor at room temperature and these metals are characterized by a complex mechanical response. This response is a result of the interplay between different deformation modes at the microscale. Since magnesium is a material showing a hexagonal close-packed (hcp) structure of the underlying atomic lattice, plasticity caused by dislocations and deformation-induced twinning are the most relevant deformation modes. Within the present paper, two different recently advocated modeling approaches suitable for capturing such modes at the microscale are analyzed. It is shown that both models can be rewritten into a variationally consistent format where every aspect is naturally driven by energy minimization. In addition to this already known feature, it turns out that both models are based on the same minimization problem. The difference between the models results from different constraints enforced within the variational principle. For getting further insight into the interaction between dislocations and twinning interfaces, accompanying atomistic simulations based on molecular dynamics are also performed. The results of such simulations enter the micromechanical model through the initial plastic deformation within the twinned phase.

MSC:

74M25 Micromechanics of solids
74E15 Crystalline structure

Software:

OVITO
Full Text: DOI

References:

[1] Mordike, Magnesium: Properties - applications - potential, Mater. Sci. Eng. A 302 pp 37– (2001) · doi:10.1016/S0921-5093(00)01351-4
[2] Kelley, The deformation characteristics of textured magnesium, Trans. Metall. Soc. of AIME 242 pp 654– (1968)
[3] Hosford, Twinning and directional slip as a cause for a strength differential effect, Metall. Mater. Trans. B 4 (5) pp 1424– (1973) · doi:10.1007/BF02644545
[4] W. Hosford The mechanics of crystals and textured polycrystals. Oxford University Press, (1993).
[5] Lou, Hardening evolution of az31b mg sheet 23 pp 44– (2007) · Zbl 1331.74007
[6] Bohlen, The texture and anisotropy of magnesium-zinc-rare earth alloy sheets, Acta Mater. 55 pp 2101– (2007) · doi:10.1016/j.actamat.2006.11.013
[7] Christian, Deformation twinning, Prog. Mater Sci. 39 pp 1– (1995) · doi:10.1016/0079-6425(94)00007-7
[8] Hauser, Deformation mechanisms in polycrystalline aggregates of magnesium, Trans. of the ASM 47 pp 102– (1955)
[9] Reed-Hill, Deformation of magnesium single crystals by nonbasal slip, J. of Metals - Trans. AIME 220 pp 496– (1957)
[10] Yoshinaga, On the nonbasal slip in magnesium crystals, Trans. Jpn Inst. Met al. 5 pp 14– (1963) · doi:10.2320/matertrans1960.5.14
[11] Tegart, Independent slip systems and ductility of hexagonal polycrystals, Philos. Mag. 9 pp 339– (1964) · doi:10.1080/14786436408229197
[12] Wonsiewicz, Independent slip systems and ductility of hexagonal polycrystals, Trans. Metall. Soc. AIME 239 pp 1422– (1967)
[13] E. Roberts P. G. Partridge The accomodation around {10-12}-1011 twins in magnesium 14 513 527 1966
[14] Obara, {11-22} {-1-123} slip system in magnesium, Acta Metall. 21 pp 845– (1973) · doi:10.1016/0001-6160(73)90141-7
[15] Lilleodden, Microcompression study of Mg (0001) single crystal, Scr. Mater. 62 pp 532– (2010) · doi:10.1016/j.scriptamat.2009.12.048
[16] Ando, Non-basal slip in magnesium-lithium alloy single crystals, Mater. Trans. 41 pp 1188– (2000) · doi:10.2320/matertrans1989.41.1188
[17] Cazacu, Generalization of drucker’s yield criterion to orthotropy, J. Math. Mech. Solids 6 pp 513– (2001) · Zbl 1128.74303
[18] Cazacu, A criterion for description of anisotropy and yield differential effects in pressure-insensitive metals, Int. J. Plast. 20 pp 2027– (2004) · Zbl 1107.74006 · doi:10.1016/j.ijplas.2003.11.021
[19] Haddadi, Towards an accurate description of the anisotropic behaviour of sheet metals under large plastic deformations: Modelling, numerical analysis and identification, Int. J. Plast. 22 pp 2226– (2006) · Zbl 1230.74051 · doi:10.1016/j.ijplas.2006.03.010
[20] Feigenbaum, Directional distortional hardening in metal plasticity within thermodynamics, Int. J. Solids Struct. 44 pp 7526– (2007) · Zbl 1166.74320 · doi:10.1016/j.ijsolstr.2007.04.025
[21] Wang, On the modeling of hardening in metals during nonproportional loading, Int. J. Plast. 24 pp 1039– (2008) · Zbl 1421.74018 · doi:10.1016/j.ijplas.2007.08.009
[22] Nomana, Experimental characterization and modeling of the hardening behavior of the sheet steel lh800, Mater. Sci. Eng. A. 527 pp 2515– (2010) · doi:10.1016/j.msea.2009.12.013
[23] B. Shi J. Mosler Comparison of different distortional hardening models suitable for the analysis of magnesium. Proc. Appl. Math. Mech., 2011. in press.
[24] Miehe, Homogenization of inelastic solid materials at finite strains based on incremental minimization principles. application to the texture analysis of polycrystals, J. Mech. Phys. Solids 50 (10) pp 2123– (2002) · Zbl 1151.74403 · doi:10.1016/S0022-5096(02)00016-9
[25] Van Houtte, Simulation of the rolling and shear texture of brass by the taylor theory adapted for mechanical twinning, Acta Metall. 26 pp 591– (1978) · doi:10.1016/0001-6160(78)90111-6
[26] Graff, Yielding of magnesium: From single crystal to polycrystalline aggregates, Int. J. Plast. 23 pp 1957– (2007) · Zbl 1129.74011 · doi:10.1016/j.ijplas.2007.07.009
[27] Kochmann, A continuum model for initiation and evolution of deformation twinning, J. Mech. Phys. Solids 57 pp 987– (2009) · doi:10.1016/j.jmps.2009.03.001
[28] Roters, Overview of constitutive laws, kinematics, homogenization and multiscale methods in crystal plasticity finiteelement modeling: Theory, experiments, applications, Acta Mater. 58 pp 1152– (2010) · doi:10.1016/j.actamat.2009.10.058
[29] M. Homayonifar J. Mosler On the coupling of plastic slip and deformation-induced twinning in magnesium: A variationally consistent approach based on energy minimization. Int. J. Plast., (2010), DOI: 10.1016/j.ijplas.2010.10.009. · Zbl 1453.74017
[30] M. Homayonifar J. Mosler Efficient modeling of microstructure evolution in magnesium by energy minimization. Int. J. Plast., (2011), DOI: 10.1016/j.ijplas.2011.05.011.
[31] Ortiz, Nonconvex energy minimization and dislocation structures in ductile single crystals, J. Mech. Phys. Solids 47 pp 397– (1999) · Zbl 0964.74012 · doi:10.1016/S0022-5096(97)00096-3
[32] Ortiz, The variational formulation of viscoplastic constitutive updates, Comput. Methods Appl. Mech. Engrg. 171 pp 419– (1999) · Zbl 0938.74016 · doi:10.1016/S0045-7825(98)00219-9
[33] Miehe, Strain-driven homogenization of inelastic microstructures and composites based on an incremental variational formulation, Int. J. Numer. Meth. Engng. 55 pp 1285– (2002) · Zbl 1027.74056 · doi:10.1002/nme.515
[34] Carstensen, Non-convex potentials and microstructures in finite-strain plasticity, Proc. R. Soc. A 458 pp 299– (2002) · Zbl 1008.74016 · doi:10.1098/rspa.2001.0864
[35] J. Mosler O. T. Bruhns On the implementation of variational constitutive updates at finite strain. In K. Hackl, editor, Variational Concepts with Application to the Mechanics of Materials, pp. 199-208. Springer, (2009).
[36] Mosler, Towards variational constitutive updates for non-associative plasticity models at finite strain: models based on a volumetric-deviatoric split, Int. J. Solids Struct. 49 pp 1676– (2009) · Zbl 1217.74021 · doi:10.1016/j.ijsolstr.2008.12.008
[37] Bartel, Thermodynamic and relaxation-based modeling of the interaction between martensitic phase transformations and plasticity, J. Mech. Phys. Solids 59 pp 1004– (2010) · Zbl 1270.74156 · doi:10.1016/j.jmps.2011.02.006
[38] Asaro, Crystal plasticity. J. Appl. Mech. 50 pp 921– (1983)
[39] Lee, Elastic-plastic deformations at finite strains, ASME, J. Appl. Mech. 36 pp 1– (1969) · Zbl 0179.55603 · doi:10.1115/1.3564580
[40] Hill, On constitutive macro-variables for heterogeneous solids at finite strain, Proc. R. Soc. 326 pp 131– (1972) · Zbl 0229.73004 · doi:10.1098/rspa.1972.0001
[41] Coleman, Thermodynamics of materials with memory, Arch. Ration. Mech. Anal. 17 pp 1– (1964) · doi:10.1007/BF00283864
[42] G. S. Kim S. Yi Y. Huang E. Lilleodden Twining and slip activity in magnesium <11-20> single crystal. In Mechanical Behavior at Small Scales - Experiments and Modeling, vol. 1224 of MRS Proceedings, (2009).
[43] Pitteri, On the kinematics of mechanical twinning in crystals, Arch. Ration. Mech. Anal. 88 pp 25– (1985) · Zbl 0614.73004 · doi:10.1007/BF00250681
[44] Ball, Fine phase mixtures as minimizers of energy, Arch. Ration. Mech. Anal. 100 pp 13– (1987) · Zbl 0629.49020 · doi:10.1007/BF00281246
[45] Q. Yu R. Mishra A. Minor Insights into Mg plasticity from in situ nanomechanical testing in the TEM. In TMS Proc., (2011).
[46] Ortiz, A theory of subgrain dislocation structures, J. Mech. Phys. Solids 48 pp 2077– (2000) · Zbl 1001.74007 · doi:10.1016/S0022-5096(99)00104-0
[47] Aubry, The mechanics of deformation-induced subgrain-dislocation structures in metallic crystals at large strains, Proc. R. Soc. 459 pp 3131– (2003) · Zbl 1041.74506 · doi:10.1098/rspa.2003.1179
[48] Hansen, Dislocation subgrain structure and modeling the plastic hardening of metallic single crystals, Modell. Simul. Mater. Sci. Eng. 18 pp 1– (2010) · doi:10.1088/0965-0393/18/5/055001
[49] Morris, First-principles examination of the twin boundary in hcp metals, Phil. Mag. 85 (2) pp 233– (2005) · doi:10.1080/14786430412331315671
[50] Stupkiewicz, Modelling of laminated microstructures in stress-induced martensitic transformations, J. Mech. Phys. Solids 50 pp 2303– (2002) · Zbl 1100.74612 · doi:10.1016/S0022-5096(02)00029-7
[51] Petryk, An energy approach to the formation of twins in tial, Metall. Mat. Trans. 34 pp 2827– (2003) · doi:10.1007/s11661-003-0184-z
[52] Aubry, A constrained sequential-lamination algorithm for the simulation of sub-grid microstructure in martensitic materials, Comput. Methods Appl. Mech. Engrg. 192 pp 2823– (2003) · Zbl 1054.74697 · doi:10.1016/S0045-7825(03)00260-3
[53] Levitas, Micromechanical modeling of stress-induced phase transformations. part 1. thermodynamics and kinetics of coupled interface propagation and reorientation, Int. J. Plast. 25 pp 239– (2009) · Zbl 1277.74059 · doi:10.1016/j.ijplas.2008.02.004
[54] Plimpton, Fast parallel algorithms for short-range molecular dynamics, J. Comput. Phys. 117 (1) pp 1– (1995) · Zbl 0830.65120 · doi:10.1006/jcph.1995.1039
[55] Sun, Crystal-melt interfacial free energies in hcp metals: A molecular dynamics study of mg, Phys. Review B 73 (2) (2006) · doi:10.1103/PhysRevB.73.024116
[56] Groh, Nanoscale void growth in magnesium: a molecular dynamics study, Int. J. Appl. Mech. 2 (1) pp 191– (2010) · doi:10.1142/S1758825110000421
[57] Stukowski, Visualization and analysis of atomistic simulation data with ovito - the open visualization tool, Modell. Simul. Mater. Sci. Eng. 18 (2010) · doi:10.1088/0965-0393/18/1/015012
[58] Serra, Computer simulation of screw dislocation interactions with twin boundaries in hcp metals, Acta Metall. Mater. 43 (12) pp 4465– (1995) · doi:10.1016/0956-7151(95)00128-I
[59] Serra, Interaction of a moving {10-12} twin boundary with perfect dislocations and loops in a hcp metal, Phil. Mag. 90 pp 845– (2010) · doi:10.1080/14786430903023901
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.