×

Stabilization of the critical nonlinear Klein-Gordon equation with variable coefficients on \(\mathbb{R}^3\). (English) Zbl 1504.81086

Summary: We prove the exponential stability of the defocusing critical semilinear wave equation with variable coefficients and locally distributed damping on \(\mathbb{R}^3\). The construction of the variable coefficients is almost equivalent to the geometric control condition. We develop the traditional Morawetz estimates and the compactness-uniqueness arguments for the semilinear wave equation to prove the unique continuation result. The observability inequality and the exponential stability are obtained subsequently.

MSC:

81Q05 Closed and approximate solutions to the Schrödinger, Dirac, Klein-Gordon and other equations of quantum mechanics
35G16 Initial-boundary value problems for linear higher-order PDEs
35L72 Second-order quasilinear hyperbolic equations
35L15 Initial value problems for second-order hyperbolic equations
35L71 Second-order semilinear hyperbolic equations
53B21 Methods of local Riemannian geometry
35Q41 Time-dependent Schrödinger equations and Dirac equations
93D23 Exponential stability

References:

[1] C. A. Bortot, M. M. Cavalcanti, V. N. Domingos Cavalcanti, P. Piccione; Exponential asymp-totic stability for the Klein-Gordon equation on non-compact Riemannian manifolds, Appl. Math. Optim., 78 (2018), 219-265. · Zbl 1404.58039
[2] J. M. Bouclet, J. Royer; Local energy decay for the damped wave equation, J. Funct. Anal., 266 (2014), no. 7, 4538-4615. · Zbl 1295.35078
[3] N. Burq, R. Joly; Exponential decay for the damped wave equation in unbounded domains, Commun. Contemp. Math., 18 (2016), no. 6. · Zbl 1351.35168
[4] N. Burq, G. Lebeau, F. Planchon; Global existance for energy critical waves in 3-D domains, J. Amer. Math. Soc. 21 (2008), no. 3, pp. 831-845. · Zbl 1204.35119
[5] A. N. Carvalho, J. W. Cholewa; Local well posedness for strongly damped wave equations with critical nonlinearities, Bull. Aust. Math. Soc., 66 (2002), no. 3, 443-463. · Zbl 1020.35059
[6] A. N. Carvalho, J. W. Cholewa; Attractors for strongly damped wave equations with critical nonlinearities, Pacific J. Math. 207 (2002), no. 2, 287-310. · Zbl 1060.35082
[7] M. M. Cavalcanti, V. N. Domingos Cavalcanti; Existence and asymptotic stability for evo-lution problems on manifolds with damping and source terms, J. Math. Anal. Appl., 291 (2004), no. 1, 109-127. · Zbl 1073.35168
[8] M. M. Cavalcanti, V. N. Domingos Cavalcanti, R. Fukuoka, J. A. Soriano; Asymptotic stability of the wave equation on compact manifolds and locally distributed damping: a sharp result, Arch. Ration. Mech. Anal. 197 (2010), no. 3, 925-964. · Zbl 1232.58019
[9] M. M. Cavalcanti, V. N. Domingos Cavalcanti, I. Lasiecka; Well-posedness and optimal decay ratesfor the wave equation with nonlinear boundary damping-source interaction, J. Diff. Eqs. 236 (2007), no. 2, 407-459. · Zbl 1117.35048
[10] B. Dehman, G. Lebeau, E. Zuazua; Stabilization and control for the subcritical semilinear wave equation, Ann. Sci.École Norm. Sup., 36 (2003), no. 4, 525-551. · Zbl 1036.35033
[11] D. Filippo, V. Pata; Strongly damped wave equations with critical nonlinearities, Nonlinear Anal., 75 (2012), no.14, 5723-5735. · Zbl 1253.35081
[12] C. Gong; Multisolitons for the Defocusing Energy Critical Wave Equation with Potentials, Comm. Math. Phys. (2018). · Zbl 1420.35287
[13] M. Grillakis; Regularity of the wave equation with a critical nonlinearity, Comm. Pure. Appl. Math, 45 (1992), 749-774. · Zbl 0785.35065
[14] M. Grillakis; Regularity and asymptotic behavior of the wave equation with a critical nonlin-earity, Ann. of Math. (2) 132 (1990), 485-509. · Zbl 0736.35067
[15] M. Hitrik; Expansions and eigenfrequencies for damped wave equations, Journées “Équations aux Dérivées Partielles”(Plestin-les-Gréves, 2001), Univ. Nantes, Exp. 10(2001), no. 6. · Zbl 1213.35329
[16] P. S. Ibrahim, M. Majdoub; Solutions globales de l’equation des ondes semilinéaire critiquè a coefficients variables, Bull. Soc. math. France. (1) 131 (2003), 1-22. · Zbl 1024.35077
[17] F. Jean; A semilinear wave equation on hyperbolic spaces, Comm. Partial Differential Equa-tions, 22 (1997), no. 3, 633-659. · Zbl 0884.58092
[18] H. Jia, B. Liu, W. Schlag; Generic and Non-Generic Behavior of Solutions to Defocusing Energy Critical Wave Equation with Potential in the Radial Case, Int. Math. Res. Not. IMRN. (2016), 1-59.
[19] H. Jia, B. Liu, G. Xu; Long Time Dynamics of Defocusing Energy Critical 3 + 1 Dimensional Wave Equation with Potential in the Radial Case, Comm. Math. Phys., 339 (2015), no. 2, 353-384. · Zbl 1329.35208
[20] R. Joly, C. Laurent; Stabilization for the semilinear wave equation with geometric control condition, Anal. PDE. 6 (2013), no. 5, 1089-1119. · Zbl 1329.35062
[21] L. V. Kapitanskii; The Cauchy problem for semilinear wave equations. I. J. Soviet Math. 49: 1166-1186, II. J. Soviet Math. 62: 2746-2777, III. J. Soviet Math. 49: 2619-2645.
[22] I. Lasiecka, J. Ong; Global solvability and uniform decays of solutions to quasilinear equation with nonlinear boundary dissipation, Comm. Partial Differential Equations, 24 (1999), no. 11, 2069-2107. · Zbl 0936.35031
[23] I. Lasiecka, R. Triggiani, P. F. Yao; Inverse/observability estimates for second-order hyper-bolic equations with variable coefficients, J. Math. Anal. Appl. 235(1999), no. 1, 13-57. · Zbl 0931.35022
[24] I. Lasiecka, D. Tataru; Uniform boundary stabilization of semilinear wave equation with nonlinear boundary dissipation, Differential Integral Equations, 6 (1993), 507-533. · Zbl 0803.35088
[25] C. Laurent; On stabilization and control for the critical Klein-Gordon equation on a 3-D compact manifold, J. Funct. Anal. 260 (2011), no. 5, 1304-1368. · Zbl 1244.35012
[26] K. S. Liu; Locally distributed control and damping for the conservative system, SIAM J. Control Optim., 35(1997), no. 5, 1574-1590. · Zbl 0891.93016
[27] Y. X. Liu, P. F. Yao; Energy Decay Rate of the Wave Equations on Riemannian Manifolds with Critical Potential, Appl. Math. Optim., 78 (2018), no. 1, 61-101. · Zbl 1402.58018
[28] C. Morawetz; Time decay for nonlinear Klein-Gordon equations, Proc. Roy. Soc. London, 306 (1968), Ser. A, 291-296. · Zbl 0157.41502
[29] M. Nakao; Decay of solutions of the wave equation with a local nonlinear dissipation, Math. Ann. 305 (1996), no. 3, 403-417. · Zbl 0856.35084
[30] M. Nakao; Energy decay for the linear and semilinear wave equation in exterior domains with some localized dissipations, Math. Z., 238 (2001), no. 4, 781-797. · Zbl 1002.35079
[31] Z. H. Ning; Asymptotic behavior of the nonlinear Schrödinger equation on exterior domain, Mathematical Research Letters, 27(6): 1825-1866. arxiv:1905.09540 [math.AP]. · Zbl 1462.35363
[32] J. Rauch; The u 5 -Klein-Gordan equation, Nonlinear PDE’s and their Applications, Pitman Res. Notes Math. Ser., vol. 53, Longman Sci. Tech., Harlow, 1976, pp. 335-364. · Zbl 0473.35055
[33] J. Rauch, M. Taylor; Decay of solutions to nondissipative hyperbolic systems on compact manifolds, Commun. Pure Appl. Math., 28 (1975), no. 4, 501-523. · Zbl 0295.35048
[34] J. Rauch, M. Taylor; Exponential decay of solutions to hyperbolic equations in bounded do-mains, Indiana Univ. Math. J. 24(1974), no. 1, 79-86. · Zbl 0281.35012
[35] R. Shen; Energy-critical semi-linear shifted wave equation on the hyperbolic spaces, Differen-tial Integral Equations 29(7/8) (2016): 731-756. · Zbl 1363.35252
[36] H. F. Smith, C. D. Sogge; On the critical semilinear wave equation outside convex obstacles, J. Amer. Math. Soc. 8(1995), no. 4, pp. 879-916. · Zbl 0860.35081
[37] M. Struwe; Globally regular solutions to the u 5 -Klein-Gordan equation, Ann. Sci. Norm. Sup. Pisa 15 (1988), 495-513. · Zbl 0728.35072
[38] G. Todorova; Cauchy problem for a nonlinear wave equation with nonlinear damping and source terms, Nonlinear Anal., 41 (2000), no. 7, Ser. A, 891-905. · Zbl 0967.35095
[39] G. Todorova, B. Yordanov; The energy decay problem for wave equations with nonlinear dissipative terms in R n , Indiana Univ. Math. J. 56(2007), no. 1, 389-416. · Zbl 1119.35006
[40] G. Todorova, B. Yordanov; Critical exponent for a nonlinear wave equation with damping, J. Diff. Eqs. 174 (2001), no. 2, 464-489. · Zbl 0994.35028
[41] P. F. Yao; On the observability inequalities for the exact controllability of the wave equation with variable coefficients, SIAM J. Control Optim., 37 (1999), no. 6, 1568-1599. · Zbl 0951.35069
[42] P. F. Yao; Energy decay for the cauchy problem of the linear wave equation of variable coefficients with dissipation, Chin. Ann. Math., 31 (2010), no. 1, Ser. B, 59-70. · Zbl 1190.35036
[43] P. F. Yao; Observability inequalities for the Euler-Bernoulli plate with variable coefficients, Contemporary Mathematics, A. M. S., Providence, RI, 268 (2000), 383-406. · Zbl 1011.35089
[44] P. F. Yao; Global smooth solutions for the quasilinear wave equation with boundary dissipa-tion, J. Diff. Eqs. 241(2007), no. 1, 62-93. · Zbl 1214.35037
[45] P. F. Yao, Y. X. Liu, J. Li; Decay rates of the hyperbolic equation in an exterior domain with half-linear and nonlinear boundary dissipations, J. Syst. Sci. Complex. 29(2016), no. 3, 657-680. · Zbl 1346.93199
[46] Z. F. Zhang, P. F. Yao; Global smooth solutions of the quasilinear wave equation with internal velocity feedbacks, SIAM J. Control Optim., 47 (2008), no. 4, 2044-2077. · Zbl 1357.35225
[47] Y. Zhou, N. Lai; Global existence of the critical semilinear wave equations with variable coefficients outside obstacles. Sci. China Math., (2011) 54: 205-220. · Zbl 1222.35125
[48] E. Zuazua; Exponential decay for the semilinear wave equation with localized damping in unbounded domains, J. Math. Pures Appl., 70 (1992), 513-529. · Zbl 0765.35010
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.