×

Local energy decay for the damped wave equation. (English) Zbl 1295.35078

Summary: We prove local energy decay for the damped wave equation on \(\mathbb R^d\). The problem which we consider is given by a long range metric perturbation of the Euclidean Laplacian with a short range absorption index. Under a geometric control assumption on the dissipation we obtain an almost optimal polynomial decay for the energy in suitable weighted spaces. The proof relies on uniform estimates for the corresponding “resolvent”, both for low and high frequencies. These estimates are given by an improved dissipative version of Mourre’s commutators method.

MSC:

35B40 Asymptotic behavior of solutions to PDEs
35L15 Initial value problems for second-order hyperbolic equations

References:

[1] Aloui, L.; Khenissi, M., Stabilisation pour l’équation des ondes dans un domaine extérieur, Rev. Mat. Iberoam., 18, 1-16 (2002) · Zbl 1016.35044
[2] Aloui, L.; Khenissi, M., Stabilization of Schrödinger equation in exterior domains, ESAIM Control Optim. Calc. Var., 13, 3, 570-579 (2007) · Zbl 1142.35081
[3] Amrein, W.; Boutet de Monvel, A.; Georgescu, V., \(C_0\)-Groups, Commutator Methods and Spectral Theory of \(N\)-Body Hamiltonians, Progr. Math., vol. 135 (1991), Birkhäuser Verlag
[4] Bardos, C.; Lebeau, G.; Rauch, J., Sharp sufficient conditions for the observation, control, and stabilization of waves from the boundary, SIAM J. Control Optim., 30, 5, 1024-1065 (1992) · Zbl 0786.93009
[5] Bony, J.-F.; Häfner, D., Low frequency resolvent estimates for long range perturbations of the Euclidean Laplacian, Math. Res. Lett., 17, 2, 301-306 (2010) · Zbl 1228.35165
[6] Bony, J.-F.; Häfner, D., Local energy decay for several evolution equations on asymptotically Euclidean manifolds, Ann. Sci. Éc. Norm. Supér., 45, 2, 311-335 (2012) · Zbl 1263.58008
[7] Bony, J.-F.; Häfner, D., Improved local energy decay for the wave equation on asymptotically Euclidean odd dimensional manifolds in the short range case, J. Inst. Math. Jussieu, 12, 3, 635-650 (2013) · Zbl 1272.35032
[8] Bouclet, J.-M., Low frequency estimates and local energy decay for asymptotically Euclidean Laplacians, Comm. Partial Differential Equations, 36, 1239-1286 (2011) · Zbl 1227.35227
[9] Bouclet, J.-M.; Tzvetkov, N., On global Strichartz estimates for non-trapping metrics, J. Funct. Anal., 254, 6 (2008) · Zbl 1168.35005
[10] Burq, N., Décroissance de l’énergie locale de l’équation des ondes pour le problème extérieur et absence de résonance au voisinage du réel, Acta Math., 180, 1, 1-29 (1998) · Zbl 0918.35081
[11] Christianson, H.; Schenck, E.; Vasy, A.; Wunsch, J., From resolvent estimates to damped waves, preprint · Zbl 1301.35191
[12] Dan, W.; Shibata, Y., On a local energy decay of solutions of dissipative wave equation, Funkt. Ekv., 38, 545-568 (1995) · Zbl 0848.35070
[13] Datchev, K.; Vasy, A., Gluing semiclassical estimates via propagation of singularities, Int. Math. Res. Not. IMRN, 2012, 23, 5409-5443 (2012) · Zbl 1262.58019
[14] Davies, E. B., The functional calculus, J. Lond. Math. Soc., 52, 1, 166-176 (1995) · Zbl 0858.47012
[15] Dimassi, M.; Sjöstrand, J., Spectral Asymptotics in the Semi-classical Limit, London Math. Soc. Lecture Note Ser., vol. 268 (1999), Cambridge University Press · Zbl 0926.35002
[16] Gérard, Ch.; Martinez, A., Principe d’absorption limite pour des opérateurs de Schrödinger à longue portée, C. R. Acad. Sci., 306, 121-123 (1988) · Zbl 0672.35013
[17] Guillarmou, C.; Hassell, A.; Sikora, A., Resolvent at low energy III: the spectral measure, Trans. Amer. Math. Soc., 365, 11, 6103-6148 (2013) · Zbl 1303.58010
[18] Ikehata, R.; Todorova, G.; Yordanov, B., Optimal decay rate of the energy for wave equations with critical potential, J. Math. Soc. Japan, 65, 1, 183-236 (2013) · Zbl 1267.35034
[19] Jensen, A., Propagation estimates for Schrödinger-type operators, Trans. Amer. Math. Soc., 291, 1, 129-144 (1985) · Zbl 0577.35089
[20] Jensen, A.; Kato, T., Spectral properties of Schrödinger operators and time-decay of the wave functions, Duke Math. J., 59, 3, 583-611 (1979) · Zbl 0448.35080
[21] Jensen, A.; Mourre, E.; Perry, P., Multiple commutator estimates and resolvent smoothness in quantum scattering theory, Ann. Inst. H. Poincaré, 41, 2, 207-225 (1984) · Zbl 0561.47007
[22] Koch, H.; Tataru, D., Carleman estimates and absence of embedded eigenvalues, Comm. Math. Phys., 267, 419-449 (2006) · Zbl 1151.35025
[23] Lax, P. D.; Morawetz, C. S.; Phillips, R. S., Exponential decay of solutions of the wave equation in the exterior of a star-shaped obstacle, Comm. Pure Appl. Math., 16, 477-486 (1963) · Zbl 0161.08001
[24] Lax, P. D.; Phillips, R. S., Scattering Theory, Pure Appl. Math., vol. 26 (1967), Academic Press · Zbl 0214.12002
[25] Lebeau, G., Equation des ondes amorties, (Boutet de Monvel, A.; Marchenko, V., Algebraic and Geometric Methods in Mathematical Physics (1996), Kluwer Academic Publishers), 73-109 · Zbl 0863.58068
[26] Lemarié-Rieusset, P. G.; Gala, S., Multipliers between Sobolev spaces and fractional differentiation, J. Math. Anal. Appl., 322, 1030-1054 (2006) · Zbl 1109.46039
[27] Martinez, A., An Introduction to Semiclassical and Microlocal Analysis, Universitext (2002), Springer · Zbl 0994.35003
[28] Melrose, R., Singularities and energy decay in acoustical scattering, Duke Math. J., 46, 1, 43-59 (1979) · Zbl 0415.35050
[29] Melrose, R.; Sjöstrand, J., Singularities of boundary value problems I, Comm. Pure Appl. Math., 31, 593-617 (1978) · Zbl 0368.35020
[30] Morawetz, C. S., The decay of solutions of the exterior initial-boundary value problem for the wave equation, Comm. Pure Appl. Math., 14, 561-568 (1961) · Zbl 0101.07701
[31] Morawetz, C. S.; Ralston, J. V.; Strauss, W. A., Decay of the solution of the wave equation outside non-trapping obstacles, Comm. Pure Appl. Math., 30, 447-508 (1977) · Zbl 0372.35008
[32] Mourre, E., Absence of singular continuous spectrum for certain self-adjoint operators, Comm. Math. Phys., 78, 391-408 (1981) · Zbl 0489.47010
[33] Ralston, J., Solution of the wave equation with localized energy, Comm. Pure Appl. Math., 22, 807-823 (1969) · Zbl 0209.40402
[34] Rauch, J.; Taylor, M., Exponential decay of solutions to hyperbolic equations in bounded domains, Indiana Univ. Math. J., 24, 1, 79-86 (1974) · Zbl 0281.35012
[35] Robert, D., Autour de l’appoximation semi-classique, Progr. Math., vol. 68 (1987), Birkhäuser · Zbl 0621.35001
[36] Royer, J., Analyse haute fréquence de l’équation de Helmholtz dissipative (2010), PhD thesis, Université de Nantes, available at
[37] Royer, J., Limiting absorption principle for the dissipative Helmholtz equation, Comm. Partial Differential Equations, 35, 8, 1458-1489 (2010) · Zbl 1205.35056
[38] Shibata, Y., On the global existence of classical solutions of second order fully nonlinear hyperbolic equations with first order dissipation in the exterior domain, Tsukuba J. Math., 7, 1, 1-68 (1983) · Zbl 0524.35071
[39] Tataru, D., Local decay of waves on asymptotically flat stationary space-times, Amer. J. Math., 135, 2, 361-401 (2013) · Zbl 1266.83033
[40] Wang, X. P., Time-decay of scattering solutions and classical trajectories, Ann. Inst. H. Poincaré, Sect. A, 47, 1, 25-37 (1987) · Zbl 0641.35018
[41] Zworski, M., Semiclassical Analysis, Grad. Stud. Math., vol. 138 (2012), American Mathematical Society · Zbl 1252.58001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.