×

On weak/strong attractor for a 3-D structural-acoustic interaction with Kirchhoff-Boussinesq elastic wall subject to restricted boundary dissipation. (English) Zbl 07920497

Summary: Existence of global attractors for a structural-acoustic system, subject to restricted boundary dissipation, is considered. Dynamics of the acoustic environment is given by a linear 3-D wave equation subject to locally distributed boundary dissipation, while the dynamics on the (flat) structural wall is given by a 2D-Kirchhoff-Boussinesq plate equation, subject to linear dissipation and supercritical nonlinear restoring forces. It is shown that the trajectories of the dynamical system defined on finite energy phase space are attracted asymptotically to a global attractor. The main challenges of the problem are related to: (i) superlinearity of the elastic energy of the structural component, (ii) Boussinesq effects of internal forces potentially leading to a finite time blowing up solutions, (iii) partially-restricted boundary dissipation placed on the interface only. The resulting system lacks dissipativity along with the suitable compactness properties, both corner stones of PDE dynamical system theories [1]. To contend with the difficulties, a new hybrid approach based on a suitable adaptation of the so called “energy methods” [2, 3] and compensated compactness [4] has been developed. The geometry of the acoustic chamber plays a critical role.

MSC:

35B41 Attractors
35L35 Initial-boundary value problems for higher-order hyperbolic equations
35L76 Higher-order semilinear hyperbolic equations
37L30 Attractors and their dimensions, Lyapunov exponents for infinite-dimensional dissipative dynamical systems
74K20 Plates
Full Text: DOI

References:

[1] Miranville, A., Zelik, S.: Attractors for dissipative partial differential equations in bounded and unbounded domains. In: Handbook of differential equations: evolutionary equations. Vol. IV, 103-200, Handb. Differ. Equ., Elsevier/North-Holland, Amsterdam (2008) · Zbl 1221.37158
[2] Ball, JM, Global attractors for damped semilinear wave equations, Discrete Contin. Dyn. Syst., 10, 1-2, 31-52, 2004 · Zbl 1056.37084
[3] Kalantarov, V.; Savostianov, A.; Zelik, S., Attractors for damped quintic wave equations in bounded domains, Ann. Henri Poincaré, 17, 9, 2555-2584, 2016 · Zbl 1356.35055
[4] Chueshov, I.; Lasiecka, I., Long Time Behavior of second Order Evolution Equations with nonlinear Damping, Memoires AMS, 195, 912, 1-183, 2008 · Zbl 1151.37059
[5] Morse, PM; Ingard, K., Theoretical Acoustics, 1968, New York: McGraw-Hill, New York
[6] Howe, MS, Acoustics of Fluid Structure Interactions. Cambridge Monographs on Mechanics, 1998, Cambridge: Cambridge University Press, Cambridge · Zbl 0921.76002
[7] Banks, HT; Smith, R., Feedback control of noise in a 2-D nonlinear structural acoustic model, Discrete Contin. Dyn. Syst., 1, 1, 119-149, 1995 · Zbl 0872.93035
[8] Banks, HT; Demetriou, M.; Smith, R., H-infinity Mini Max periodic control in a two-dimensional structural acoustic model with piezoceramic actuators, IEEE Trans. Autom. Control, 41, 7, 943-959, 1996 · Zbl 0856.93049
[9] Fahroo, F.; Wang, C., A new model for acoustic-structure interaction and its exponential stability, Quart. Appl. Math., 57, 1, 157-179, 1999 · Zbl 1025.76048
[10] Bucci, F.; Chueshov, I.; Lasiecka, I., Global attractors for a composite system of nonlinear wave and plate equations, Commun. Pure Appl. Anal., 6, 1, 113-140, 2007 · Zbl 1220.35172
[11] Lasiecka, I., Mathematical Control Theory of Coupled PDEs, 2002, Philadelphia: SIAM, Philadelphia · Zbl 1032.93002
[12] Avalos, G.; Lasiecka, I., Exact controllability of structural acoustic interactions, J. Math. Pures Appl., 82, 8, 1047-1073, 2003 · Zbl 1109.93004
[13] Avalos, G.; Toundykov, D., Boundary stabilization of structural acoustic interactions with interface on a Reissner-Mindlin plate, Nonlinear Anal. Real World Appl., 12, 6, 2985-3013, 2011 · Zbl 1231.35253
[14] Liu, Y.; Mohsin, B.; Hajaiej, H.; Yao, P-F; Chen, G., Exact controllability of structural interactions with variable coefficients, SICON, 54, 4, 2132-2153, 2016 · Zbl 1347.35154
[15] Varlamov, V., Existence and uniqueness of a solution to the Cauchy problem for the damped Boussinesq equation, Math. Methods Appl. Sci., 19, 8, 639-649, 1996 · Zbl 0847.35111
[16] Yue, L., Instability of solutions to a generalised Boussinesq equation, SIAM H. Math. Anal., 26, 6, 1527-1546, 1995 · Zbl 0857.35103
[17] Lasiecka, I.; Tataru, D., Uniform boundary stabilization of semilinear wave equations with nonlinear boundary damping, Differ. Integral Equ., 6, 3, 507-533, 1993 · Zbl 0803.35088
[18] Bucci, F.; Toundykov, D., Finite-dimensional attractor for a composite system of wave/plate equations with localized damping, Nonlinearity, 23, 9, 2271-2306, 2010 · Zbl 1204.35051
[19] Lagnese, J., Boundary Stabilization of Thin Plates, 1989, Philadelphia: SIAM, Philadelphia · Zbl 0696.73034
[20] Lagnese, J.; Lions, JL, Modeling, 1988, Analysis and Control of Thin Plates. Collection RMA: Masson, Analysis and Control of Thin Plates. Collection RMA · Zbl 0662.73039
[21] Chueshov, I.; Lasiecka, I., On the attractor for \(2D\)-Kirshhoff-Boussinesq model with supercritical nonlinearity, Commun. Partial Differ. Equ., 36, 67-99, 2011 · Zbl 1217.35034
[22] Feng, B.; Ma, TF; Monteiro, RN; Raposo, CA, Dynamics of laminated Timoshenko beams, J. Dyn. Differ. Equ., 30, 4, 1489-1507, 2018 · Zbl 1403.35055
[23] Kaltenbacher, B., Mathematics of nonlinear acoustics, Evol. Equ. Control Theory, 4, 4, 447-491, 2015 · Zbl 1339.35003
[24] Lasiecka, I.; Rodrigues, JH, Weak and strong semigroups in structural acoustic Kirchhoff-Boussinesq interactions with boundary feedback, J. Differ. Equa., 298, 387-429, 2021 · Zbl 1470.35041
[25] Lasiecka, I.; Ma, TF; Monteiro, RN, Global smooth attractors for dynamics of thermal shallow shells without vertical dissipation, Trans. Am. Math. Soc., 371, 11, 8051-8096, 2019 · Zbl 1473.35061
[26] Feng, H., Guo, B.-Z.: On stability equivalence between dynamic output feedback and static output feedback for a class of second order infinite-dimensional systems SICON, vol 53, nr 4 (2015) · Zbl 1317.93118
[27] Ruiz, A., Unique continuation for weak solutions of the wave equation plus a potential, J. Math. Pures Appl., 71, 455-467, 1992 · Zbl 0832.35084
[28] Yang, F.; Yao, P.; Chen, G., Boundary controllability of structural acoustic systems with variable coefficients and curved walls, Math. Control Signals Syst., 30, 1, Art. 5, 28 pp, 2018 · Zbl 1391.93044
[29] Peng, Q.; Zhang, Z., Global attractor for a coupled wave and plate equation with nonlocal damping on Riemanian manifold, Appl. Math. Optim., 2023 · Zbl 1518.35134 · doi:10.1007/s00245-023-09998-w
[30] Lasiecka, I., Triggiani, R., Zhang, X.: Nonconservative wave equations with unobserved Neumann B.C. global uniqueness and observability in one shot. In: Differential Geometric Methods in the Control of PDE, Contemprary Mathematics, vol. 268, pp. 227-325, AMS (2000) · Zbl 1096.93503
[31] Lasiecka, I., Boundary stabilization of a three dimensional structural acoustic model, J. Math. Pures Appl., 78, 203-322, 1999 · Zbl 0927.35060
[32] Daniels, I.; Lebiedzik, C., Existence and uniqueness of a structural acoustic model involving a nonlinear shell, Discrete Contin. Dyn. Syst. l, 1, 2, 243-252, 2008 · Zbl 1152.35428
[33] Tataru, D., On the regularity of boundary traces for the wave equation, Ann Scuola Normale Superiore, Pisa CL SCI, 26, 185-206, 1998 · Zbl 0932.35136
[34] Lasiecka, I.; Lebiedzik, C., Asymptotic behaviour of nonlinear structural acoustic interactions with thermal effects on the interface, Nonlinear Anal., 49, 703-735, 2002 · Zbl 1006.35016
[35] Chueshov, I.; Eller, M.; Lasiecka, I., On the attractor for a semilinear wave equation with critical exponent and nonlinear boundary dissipation, Commun. Partial Differ. Equ., 27, 9-10, 1901-1951, 2002 · Zbl 1021.35020
[36] Chueshov, I.; Lasiecka, I., Long-time dynamics of von Karman semi-flows with non-linear boundary/interior damping, J. Differ. Equa., 233, 42-86, 2007 · Zbl 1116.35017
[37] Chueshov, I.; Lasiecka, I., Attractors for second order evolution equations with a nonlinear damping, J. Dyn. Differ. Equ., 16, 2, 469-512, 2004 · Zbl 1072.37054
[38] Feireisl, E., Attractors for wave equation with nonlinear dissipation and critical exponents., C.R. Acad. Sci. Paris, Ser. I, 315, 551-555, 1992 · Zbl 0792.35123
[39] Toundykov, D., Optimal decay rates for solutions of a nonlinear wave equation with localized nonlinear dissipation of unrestricted growth and critical exponent source terms under mixed boundary conditions, Nonlinear Anal., 67, 512-544, 2007 · Zbl 1117.35050
[40] Temam, R., Infinite Dimensional Dynamical Systems in Mechanics and PhysicsApplied Mathematical Sciences, 1997, Berlin: Springer, Berlin · Zbl 0871.35001
[41] Babin, AV; Vishik, MI, Attractors of Evolution Equations, 1992, Amsterdam: North Holland, Amsterdam · Zbl 0778.58002
[42] Chueshov, I.; Lasiecka, I., Von Karman Evolution Equations. Well-Posedness and Long-Time Dynamics, 2010, New York: Springer, New York · Zbl 1298.35001
[43] Kaltenbacher, B.: Some aspects in nonlinear acoustics: structure-acoustic coupling and shape optimization. In: Mathematical theory of evolutionary fluid-flow structure interactions, pp. 269-307, Oberwolfach Semin, 48, Birkhäuser/Springer, Cham (2018)
[44] Bucci, F.; Chueshov, I., Long-time dynamics of a coupled system of nonlinear wave and thermoelastic plate equations, Discrete Contin. Dyn. Syst., 22, 3, 557-586, 2008 · Zbl 1160.37032
[45] Becklin, A.; Rammaha, M.; Mohammad, A., Hadamard well-posedness for a structure acoustic model with a supercritical source and damping terms, Evol. Equ. Control Theory, 10, 4, 797-836, 2021 · Zbl 1481.35269
[46] Feng, N., Yang, Z.: Well-posedness and attractor on the 2D Kirchhoff-Boussinesq models. Nonlinear Anal. 196, 111803, 29 p (2020) · Zbl 1441.35061
[47] Li, J.; Chai, S., Uniform decay rates for a variable coefficients structural acoustic model with curved interface on a shallow shell, Appl. Math. Optim., 2023 · Zbl 1526.76045 · doi:10.1007/s00245-023-09968-2
[48] Liu, Y.; Yao, P-F, Energy decay rate of the wave equations on Riemannian manifolds with critical potential, Appl. Math. Optim., 78, 1, 61-101, 2018 · Zbl 1402.58018
[49] Yang, Z.; Feng, N.; Li, Y., Robust attractors for a Kirchhoff-Boussinesq type equation, Evol. Equ. Control Theory, 9, 2, 469-486, 2020 · Zbl 1442.35044
[50] Yang, Z.; Ding, P.; Liu, X., Attractors and their stability on Boussinesq type equations with gentle dissipation, Commun. Pure Appl. Anal., 18, 2, 911-930, 2019 · Zbl 1409.35035
[51] Zelati, MC, Global and exponential attractors for the singularly perturbed extensible beam, DCDS, 25, 1041-1060, 2005 · Zbl 1183.35060
[52] Ma, TF; Huertas, S.; Paulo, N., Attractors for semilinear wave equations with localized damping and external forces, Commun. Pure Appl. Anal., 19, 4, 2219-2233, 2020 · Zbl 1441.35062
[53] Chueshov, I.; Lasiecka, I.; Toundykov, D., Long-term dynamics of semilinear wave equation with nonlinear localized interior damping and a source term of critical exponent, Discrete Contin. Dyn. Syst., 20, 3, 459-509, 2008 · Zbl 1151.35009
[54] Chueshov, I.; Lasiecka, I.; Toundykov, D., Global attractor for a wave equation with nonlinear localized boundary damping and a source term of critical exponent, J. Dyn. Differ. Equ., 21, 2, 269-314, 2009 · Zbl 1173.35025
[55] Sakamoto, R., Hyperbolic Boundary Value Problems, 1982, Cambridge: Cambridge University Press, Cambridge · Zbl 0494.35002
[56] Moise, I.; Rosa, RA; Wang, X., Attractors for noncompact nonautonomous systems via energy equations, Discrete Contin. Dyn. Syst., 10, 473-496, 2004 · Zbl 1060.35023
[57] Hale, JK, Asymptotoc Behavior of Dissipative Systems, 1988, Providence, RI: Mathematical Surveys andMonographs. AMS, Providence, RI · Zbl 0642.58013
[58] Ladyzhenskaya, O.: Attractors of Semigroups and Evolution Equations. Cambridge University Press, Cambridge, Lezioni Lincee (1991) · Zbl 0755.47049
[59] Lasiecka, I.; Lebiedzik, C., Decay rates of interactive hyperbolic-parabolic PDE models with thermal effects on the interface, Appl. Math. Optim., 42, 127-167, 2000 · Zbl 0980.35031
[60] Simon, J., Compact sets in the space Lp(0, T;B), Annali di Matematica Pura ed Applicata, Ser., 4, 148, 65-96, 1987 · Zbl 0629.46031
[61] Chueshov, I., Dynamics of Quasi-Stable Dissipative Systems, 2015, Berlin: Springer, Berlin · Zbl 1362.37001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.