×

Uniform decay rates for a variable-coefficient structural acoustic model with curved interface on a shallow shell. (English) Zbl 1526.76045

Summary: Uniform stabilization of a structural acoustic model describing an acoustic chamber with flexible curved wall is addressed. The coupled nonlinear system consists of a variable-coefficient wave equation and a shallow shell model which is used to model the flexible curved wall (interface). The coupling between the wave and the shell takes place on the interface. Derivation of stability estimates for the variable-coefficient coupled system with the shallow shell depends on the Riemannian geometry method and the multiplier technique. The uniform energy decay rates of the overall interactive model are achieved by introducing nonlinear boundary feedbacks applied to the wave equation and the shell model.

MSC:

76Q05 Hydro- and aero-acoustics
74F10 Fluid-solid interactions (including aero- and hydro-elasticity, porosity, etc.)
74K25 Shells
35Q35 PDEs in connection with fluid mechanics
Full Text: DOI

References:

[1] Avalos, G.; Toundykov, D., Boundary stabilization of structural acoustic interactions with interface on a Reissner-Mindlin plate, Nonlinear Anal. RWA, 12, 2985-3013 (2011) · Zbl 1231.35253
[2] Becklin, AR; Rammaha, MA, Hadamard well-posedness for a structure acoustic model with a supercritical source and damping terms, Evol. Equ. Control Theory, 10, 4, 797-836 (2021) · Zbl 1481.35269 · doi:10.3934/eect.2020093
[3] Bongarti, M.; Lasiecka, I.; Rodrigues, JH, Boundary stabilization of the linear MGT equation with partially absorbing boundary data and degenerate viscoelasticity, Discret. Contin. Dyn. Syst. Ser. S, 15, 6, 1355-1376 (2022) · Zbl 1491.35287 · doi:10.3934/dcdss.2022020
[4] Camurdan, M., Ji, G.: Uniform feedback stabilization via boundary moments in a three dimensional structural acoustic model. 37 IEEE CDC Proc. 3, 2058-2064 (1998)
[5] Cagnol, J.; Lasiecka, I.; Lebiedzik, C.; Zolesio, JP, Uniform stability in structural acoustic models with flexible curved walls, J. Differ. Equ., 186, 88-121 (2002) · Zbl 1508.74045 · doi:10.1016/S0022-0396(02)00029-3
[6] Chai, SG; Guo, YX; Yao, PF, Boundary feedback stabilization of shallow shells, SIAM J. Control Optim., 42, 1, 239-259 (2003) · Zbl 1055.93065 · doi:10.1137/S0363012901397156
[7] Dalsen, MG-V, On a structural acoustic model with interface a Reissner-Mindlin plate or a Timoshenko beam, J. Math. Anal. Appl., 320, 121-144 (2006) · Zbl 1130.35367 · doi:10.1016/j.jmaa.2005.06.034
[8] Dalsen, MG-V, On a structural acoustic model which incorporates shear and thermal effects in the structural component, J. Math. Anal. Appl., 341, 2, 1253-1270 (2008) · Zbl 1137.35436 · doi:10.1016/j.jmaa.2007.10.073
[9] Deng, L.; Zhang, ZF, Controllability for transmission wave/plate equations on Riemannian manifolds, Syst. Control Lett., 19, 48-54 (2016) · Zbl 1337.93019 · doi:10.1016/j.sysconle.2016.02.016
[10] Gulliver, R., Lasiecka, I., Littman, W., Triggiani, R.: The case for differential geometry in the control of single and coupled PDEs: the structural acoustic chamber. In: Geometric Methods in Inverse Problems and PDE control. IMA Vol. Math. Appl., vol. 137, pp. 73-181, Springer, New York (2004) · Zbl 1067.35014
[11] Hao, JH; Du, FQ, Decay rate for viscoelastic wave equation of variable coefficients with delay and dynamic boundary conditions, Math. Methods Appl. Sci., 44, 1, 284-302 (2021) · Zbl 1469.35034 · doi:10.1002/mma.6731
[12] Kaltenbacher, B., Kukavica, I., Lasiecka, I., Triggiani, R., Tuffaha, A., Webster, J. T.: Mathematical Theory of Evolutionary Fluid-Flow Structure Interactions. Lecture Notes from Oberwolfach Seminars. Oberwolfach Seminars 48, Birkhäuser/Springer, Cham (2018) · Zbl 1403.35005
[13] Lasiecka, I.; Triggiani, R., Uniform stabilization of the wave equations with Dirichlet or Neumann feedback control without geometric conditions, Appl. Math. Optim., 25, 2, 189-224 (1992) · Zbl 0780.93082 · doi:10.1007/BF01182480
[14] Lasiecka, I.; Tartaru, D., Uniform boundary stabilization of semilinear wave equation with nonlinear boundary damping, Differ. Integral Equ., 6, 3, 507-533 (1993) · Zbl 0803.35088
[15] Lasiecka, I.; Marchard, R., Riccati equations arising in acoustic structure interaction with curved walls, Dyn. Control, 8, 269-292 (1998) · Zbl 0911.93045 · doi:10.1023/A:1008210520458
[16] Lasiecka, I., Mathematical control theory in structural acoustic problems, Math. Models Methods Appl. Sci., 8, 7, 1119-1153 (1998) · Zbl 0940.93037 · doi:10.1142/S0218202598000524
[17] Lasiecka, I., Lebiedzik, C.: Uniform stability in structural acoustic systems with thermal effiects and nonlinear boundary damping. Control Cyber. (special invited volume on “Control of PDE’s”) 28, 557-581 (1999) · Zbl 0960.93020
[18] Lasiecka, I., Boundary stabilization of a 3-dimensional structural acoustic model, J. Math. Pure Appl., 78, 203-232 (1999) · Zbl 0927.35060 · doi:10.1016/S0021-7824(01)80009-X
[19] Lasiecka, I.; Lebiedzik, C., Decay rates of interactive hyperbolic-parabolic PDE models with thermal effects on the interface, Appl. Math. Optim., 142, 127-167 (2000) · Zbl 0980.35031 · doi:10.1007/s002450010010
[20] Lasiecka, I.; Lebiedzik, C., Asymptotic behaviour of nonlinear structural acoustic interactions with thermal effects on the interface, Nonlinear Anal. TMA, 49, 703-735 (2002) · Zbl 1006.35016 · doi:10.1016/S0362-546X(01)00135-3
[21] Lasiecka, I.; Triggiani, R., Uniform stabilization of a shallow shell model with nonlinear boundary feedbacks, J. Math. Anal. Appl., 269, 642-688 (2002) · Zbl 1067.74044 · doi:10.1016/S0022-247X(02)00041-0
[22] Lasiecka, I.; Rodrigues, JH, Weak and strong semigroups in structural acoustic Kirchhoff-Boussinesq interactions with boundary feedback, J. Differ. Equ., 298, 387-429 (2021) · Zbl 1470.35041 · doi:10.1016/j.jde.2021.07.009
[23] Li, J.; Chai, SG, Energy decay for a nonlinear wave equation of variable coefficients with acoustic boundary conditions and a time-varying delay in the boundary feedback, Nonlinear Anal. TMA, 112, 105-117 (2015) · Zbl 1304.35096 · doi:10.1016/j.na.2014.08.021
[24] Li, J.; Chai, SG, Existence and energy decay rates of solutions to the variable-coefficient Euler-Bernoulli plate with a delay inlocalized nonlinear internal feedback, J. Math. Anal. Appl., 443, 981-1006 (2016) · Zbl 1343.93065 · doi:10.1016/j.jmaa.2016.05.060
[25] Li, J.; Chai, SG, Stabilization of the variable-coefficient structural acoustic model with curved middle surface and delay effects in the structural component, J. Math. Anal. Appl., 454, 510-532 (2017) · Zbl 1417.35217 · doi:10.1016/j.jmaa.2017.05.001
[26] Li, S.; Yao, PF, Stabilization of the Euler-Bernoulli plate with variable coefficients by nonlinear internal feedback, Automatica, 50, 2225-2233 (2014) · Zbl 1297.93130 · doi:10.1016/j.automatica.2014.07.010
[27] Liu, YX; Yao, PF, Energy decay rate of the wave equations on Riemannian manifolds with critical potential, Appl. Math. Optim., 78, 61-101 (2018) · Zbl 1402.58018 · doi:10.1007/s00245-017-9399-z
[28] Morse, PM; Ingard, KU, Theoretical Acoustics (1968), New York: McGraw-Hill, New York
[29] Wu, H.; Shen, CL; Yu, YL, An Introduction to Riemannian Geometry (1989), Beijing: Peking University Press, Beijing
[30] Yao, PF, On the observatility inequality for exact controllability of wave equations with variable coefficients, SIAM J. Control Optim., 37, 5, 1568-1599 (1999) · Zbl 0951.35069 · doi:10.1137/S0363012997331482
[31] Yao, PF, Observability inequalities for shallow shells, SIAM J. Control Optim., 38, 6, 1729-1756 (2000) · Zbl 0974.35013 · doi:10.1137/S0363012999338692
[32] Yao, PF, Modeling and Control in Vibrational and Structural Dynamics: A Differential Geometric Approach (2011), Boca Raton: CRC Press, Boca Raton · Zbl 1229.74002 · doi:10.1201/b11042
[33] Yang, FY; Yao, PF; Chen, G., Boundary controllability of structural acoustic systems with variable coefficients and curved walls, Math. Control Signals Syst., 30, 5 (2018) · Zbl 1391.93044 · doi:10.1007/s00498-018-0211-7
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.