×

Geometrizing the Klein-Gordon and Dirac equations in doubly special relativity. (English) Zbl 1518.83001

Summary: In this work we discuss the deformed relativistic wave equations, namely the Klein-Gordon and Dirac equations in a doubly special relativity scenario. We employ what we call a geometric approach, based on the geometry of a curved momentum space, which should be seen as complementary to the more spread algebraic one. In this frame we are able to rederive well-known algebraic expressions, as well as to treat yet unresolved issues, to wit, the explicit relation between both equations, the discrete symmetries for Dirac particles, the fate of covariance, and the formal definition of a Hilbert space for the Klein-Gordon case.

MSC:

83A05 Special relativity
81Q05 Closed and approximate solutions to the Schrödinger, Dirac, Klein-Gordon and other equations of quantum mechanics
81R25 Spinor and twistor methods applied to problems in quantum theory
81R20 Covariant wave equations in quantum theory, relativistic quantum mechanics
53Z05 Applications of differential geometry to physics
53C21 Methods of global Riemannian geometry, including PDE methods; curvature restrictions

References:

[1] Goroff, M. H.; Sagnotti, A., The ultraviolet behavior of Einstein gravity, Nucl. Phys. B, 266, 709-36 (1986) · doi:10.1016/0550-3213(86)90193-8
[2] Goroff, M. H.; Sagnotti, A., Quantum gravity at two loops, Phys. Lett. B, 160, 81-86 (1985) · doi:10.1016/0370-2693(85)91470-4
[3] Donoghue, J. F., General relativity as an effective field theory: The leading quantum corrections, Phys. Rev. D, 50, 3874-88 (1994) · doi:10.1103/PhysRevD.50.3874
[4] Giacchini, B. L.; de Paula Netto, T.; Shapiro, I. L., Vilkovisky unique effective action in quantum gravity, Phys. Rev. D, 102 (2020) · Zbl 1456.83025 · doi:10.1103/PhysRevD.102.106006
[5] Giacchini, B. L.; de Paula Netto, T.; Shapiro, I. L., On the Vilkovisky-DeWitt approach and renormalization group in effective quantum gravity, J. High Energy Phys., JHEP10(2020)011 (2020) · Zbl 1456.83025 · doi:10.1007/JHEP10(2020)011
[6] Solodukhin, S. N., Renormalization group equations and the recurrence pole relations in pure quantum gravity, Nucl. Phys. B, 962 (2021) · Zbl 1476.83059 · doi:10.1016/j.nuclphysb.2020.115246
[7] Mukhi, S., String theory: a perspective over the last 25 years, Class. Quantum Grav., 28 (2011) · Zbl 1222.83003 · doi:10.1088/0264-9381/28/15/153001
[8] Aharony, O.; Aharony, O., A Brief review of ‘little string theories’, Class. Quantum Grav., 17, 929-38 (2000) · Zbl 0952.81040 · doi:10.1088/0264-9381/17/5/302
[9] Dienes, K. R.; Dienes, K. R., String theory and the path to unification: a review of recent developments, Phys. Rep., 287, 447-525 (1997) · doi:10.1016/S0370-1573(97)00009-4
[10] Sahlmann, H., Loop quantum gravity-a short review, pp 185-210 (2010)
[11] Dupuis, M.; Ryan, J. P.; Speziale, S., Discrete gravity models and loop quantum gravity: a short review, SIGMA, 8, 052 (2012) · Zbl 1270.83015 · doi:10.3842/SIGMA.2012.052
[12] Loll, R., Quantum gravity from causal dynamical triangulations: a review, Class. Quantum Grav., 37 (2019) · Zbl 1478.83095 · doi:10.1088/1361-6382/ab57c7
[13] Wallden, P.; Wallden, P., Causal sets dynamics: review & outlook, J. Phys.: Conf. Ser., 453 (2013) · doi:10.1088/1742-6596/453/1/012023
[14] Wallden, P.; Wallden, P., Causal Sets: Quantum Gravity from a Fundamentally Discrete Spacetime, J. Phys.: Conf. Ser., 222 (2010) · doi:1088/1742-6596/222/1/012053
[15] Henson, J.; Oriti, D., The Causal set approach to quantum gravity, Approaches to Quantum Gravity: Toward a New Understanding of Space, Time and Matter, pp 393-413 (2009), Cambridge: Cambridge University Press, Cambridge
[16] Bonanno, A.; Eichhorn, A.; Holger Gies, J. M.; Pawlowski, R. P.; Reuter, M.; Saueressig, F.; Vacca, G. P., Critical reflections on asymptotically safe gravity, Front. Phys., 8, 269 (2020) · doi:10.3389/fphy.2020.00269
[17] Gross, D. J.; Mende, P. F., String theory beyond the planck scale, Nucl. Phys. B, 303, 407-54 (1988) · doi:10.1016/0550-3213(88)90390-2
[18] Amati, D.; Ciafaloni, M.; Veneziano, G., Can space-time be probed below the string size?, Phys. Lett. B, 216, 41-47 (1989) · doi:10.1016/0370-2693(89)91366-X
[19] Garay, L. J., Quantum gravity and minimum length, Int. J. Mod. Phys. A, 10, 145-66 (1995) · doi:10.1142/S0217751X95000085
[20] Chang, L. N.; Lewis, Z.; Minic, D.; Takeuchi, T., on the minimal length uncertainty relation and the foundations of string theory, Adv. High Energy Phys., 2011 (2011) · Zbl 1234.81093 · doi:10.1155/2011/493514
[21] Hossenfelder, S., Minimal length scale scenarios for quantum gravity, Living Rev. Relativ., 16, 2 (2013) · Zbl 1320.83004 · doi:10.12942/lrr-2013-2
[22] Addazi, A., Quantum gravity phenomenology at the dawn of the multi-messenger era—A review, Prog. Part. Nucl. Phys., 125 (2022) · doi:10.1016/j.ppnp.2022.103948
[23] Colladay, D.; Alan Kostelecky, V., Lorentz violating extension of the standard model, Phys. Rev. D, 58 (1998) · doi:10.1103/PhysRevD.58.116002
[24] Kostelecky, V. A.; Russell, N., Data tables for Lorentz and CPT violation, Rev. Mod. Phys., 83, 11-31 (2011) · doi:10.1103/RevModPhys.83.11
[25] Mattingly, D., Modern tests of Lorentz invariance, Living Rev. Relativ., 8, 5 (2005) · Zbl 1255.83059 · doi:10.12942/lrr-2005-5
[26] Liberati, S., Tests of Lorentz invariance: a 2013 update, Class. Quantum Grav., 30 (2013) · Zbl 1273.83002 · doi:10.1088/0264-9381/30/13/133001
[27] Amelino-Camelia, G., Quantum-spacetime phenomenology, Living Rev. Relativ., 16, 5 (2013) · doi:10.12942/lrr-2013-5
[28] Snyder, H. S., Quantized space-time, Phys. Rev., 71, 38-41 (1947) · Zbl 0035.13101 · doi:10.1103/PhysRev.71.38
[29] Snyder, H. S., The electromagnetic field in quantized space-time, Phys. Rev., 72, 68-71 (1947) · Zbl 0041.33118 · doi:10.1103/PhysRev.72.68
[30] Lukierski, J.; Ruegg, H.; Nowicki, A.; Tolstoi, V. N., Q deformation of Poincare algebra, Phys. Lett. B, 264, 331-8 (1991) · doi:10.1016/0370-2693(91)90358-W
[31] Kosinski, P.; Lukierski, J.; Maslanka, P., kappa deformed Wigner construction of relativistic wave functions and free fields on kappa-Minkowski space, Nucl. Phys. B, 102, 161-8 (2001) · Zbl 1006.81085 · doi:10.1016/S0920-5632(01)01552-3
[32] Kowalski-Glikman, J.; Nowak, S., Doubly special relativity and de Sitter space, Class. Quantum Grav., 20, 4799-816 (2003) · Zbl 1042.83005 · doi:10.1088/0264-9381/20/22/006
[33] Mignemi, S., Doubly special relativity and translation invariance, Phys. Lett. B, 672, 186-9 (2009) · doi:10.1016/j.physletb.2009.01.023
[34] Govindarajan, T. R.; Gupta, K. S.; Harikumar, E.; Meljanac, S.; Meljanac, D., Deformed oscillator algebras and QFT in kappa-Minkowski spacetime, Phys. Rev. D, 80 (2009) · doi:10.1103/PhysRevD.80.025014
[35] Mignemi, S., Classical and quantum mechanics of the nonrelativistic Snyder model, Phys. Rev. D, 84 (2011) · Zbl 1266.83093 · doi:10.1103/PhysRevD.84.025021
[36] Poulain, T.; Wallet, J-C, κ-Poincaré invariant orientable field theories at one-loop, J. High Energ. Phys., JHEP01(2019)064 (2019) · Zbl 1409.83070 · doi:10.1007/JHEP01(2019)064
[37] Arzano, M.; Bevilacqua, A.; Kowalski-Glikman, J.; Rosati, G.; Unger, J., κ-deformed complex fields and discrete symmetries, Phys. Rev. D, 103 (2021) · doi:10.1103/PhysRevD.103.106015
[38] Lizzi, F.; Mercati, F., κ-Poincaré-comodules, braided tensor products and noncommutative quantum field theory, Phys. Rev. D, 103 (2021) · doi:10.1103/PhysRevD.103.126009
[39] Lukierski, J.; Nowicki, A.; Ruegg, H., New quantum Poincare algebra and k deformed field theory, Phys. Lett. B, 293, 344-52 (1992) · Zbl 0834.17022 · doi:10.1016/0370-2693(92)90894-A
[40] Giller, S.; Kosinski, P.; Majewski, M.; Maslanka, P.; Kunz, J., More about Q deformed Poincare algebra, Phys. Lett. B, 286, 57-62 (1992) · doi:10.1016/0370-2693(92)90158-Z
[41] Nowicki, A.; Sorace, E.; Tarlini, M., The Quantum deformed Dirac equation from the kappa Poincare algebra, Phys. Lett. B, 302, 419-22 (1993) · doi:10.1016/0370-2693(93)90419-I
[42] Agostini, A.; Amelino-Camelia, G.; Arzano, M., Dirac spinors for doubly special relativity and kappa Minkowski noncummutative space-time, Class. Quantum Grav., 21, 2179-202 (2004) · Zbl 1051.83003 · doi:10.1088/0264-9381/21/8/018
[43] D’Andrea, F., Remarks on the geometry of kappa-Minkowski space, J. Math. Phys., 47 (2006) · Zbl 1112.58009 · doi:10.1063/1.2204808
[44] Carmona, J. M.; Cortés, J. L.; Relancio, J. J., Curved momentum space, locality and generalized space-time, Universe, 7, 99 (2021) · doi:10.3390/universe7040099
[45] Relancio, J. J., Geometry of multiparticle systems with a relativistic deformed kinematics and the relative locality principle, Phys. Rev. D, 104 (2021) · doi:10.1103/PhysRevD.104.024017
[46] Wagner, F., Generalized uncertainty principle or curved momentum space?, Phys. Rev. D, 104 (2021) · doi:10.1103/PhysRevD.104.126010
[47] Wagner, F., Relativistic extended uncertainty principle from spacetime curvature, Phys. Rev. D, 105 (2022) · doi:10.1103/PhysRevD.105.025005
[48] Born, M., A suggestion for unifying quantum theory and relativity, Proc. R. Soc. A, 165, 291-303 (1938) · Zbl 0018.42906 · doi:10.1098/rspa.1938.0060
[49] Miron, R.; Hrimiuc, D.; Shimada, H.; Sabau, S. V., The Geometry of Hamilton and Lagrange Spaces (Fundamental Theories of Physics) (2001), Berlin: Springer, Berlin · Zbl 1001.53053
[50] Kostelecky, A., Riemann-Finsler geometry and Lorentz-violating kinematics, Phys. Lett. B, 701, 137-43 (2011) · doi:10.1016/j.physletb.2011.05.041
[51] Barcelo, C.; Liberati, S.; Visser, M., Refringence, field theory and normal modes, Class. Quantum Grav., 19, 2961-82 (2002) · Zbl 1004.83039 · doi:10.1088/0264-9381/19/11/314
[52] Weinfurtner, S.; Liberati, S.; Visser, M., Analogue spacetime based on 2-component Bose-Einstein condensates, vol 718, pp 115-63 (2007) · Zbl 1131.83016
[53] Hasse, W.; Perlick, V., Redshift in Finsler spacetimes, Phys. Rev. D, 100 (2019) · doi:10.1103/PhysRevD.100.024033
[54] Stavrinos, P. C.; Alexiou, M., Raychaudhuri equation in the Finsler-Randers space-time and generalized scalar-tensor theories, Int. J. Geom. Meth. Mod. Phys., 15 (2017) · Zbl 1386.83119 · doi:10.1142/S0219887818500391
[55] Girelli, F.; Liberati, S.; Sindoni, L., Planck-scale modified dispersion relations and Finsler geometry, Phys. Rev. D, 75 (2007) · doi:10.1103/PhysRevD.75.064015
[56] Amelino-Camelia, G.; Barcaroli, L.; Gubitosi, G.; Liberati, S.; Loret, N., Realization of doubly special relativistic symmetries in Finsler geometries, Phys. Rev. D, 90 (2014) · doi:10.1103/PhysRevD.90.125030
[57] Letizia, M.; Liberati, S., Deformed relativity symmetries and the local structure of spacetime, Phys. Rev. D, 95 (2017) · doi:10.1103/PhysRevD.95.046007
[58] Leonardo Barcaroli, L. K.; Brunkhorst, G. G.; Loret, N.; Pfeifer, C., Planck-scale-modified dispersion relations in homogeneous and isotropic spacetimes, Phys. Rev. D, 95 (2017) · doi:10.1103/PhysRevD.95.024036
[59] Leonardo Barcaroli, L. K.; Brunkhorst, G. G.; Loret, N.; Pfeifer, C., Hamilton geometry: Phase space geometry from modified dispersion relations, Phys. Rev. D, 92 (2015) · doi:10.1103/PhysRevD.92.084053
[60] Leonardo Barcaroli, L. K.; Brunkhorst, G. G.; Loret, N.; Pfeifer, C., Curved spacetimes with local κ-Poincaré dispersion relation, Phys. Rev. D, 96 (2017) · doi:10.1103/PhysRevD.96.084010
[61] Carmona, J. M.; Cortés, J. L.; Relancio, J. J., Relativistic deformed kinematics from momentum space geometry, Phys. Rev. D, 100 (2019) · doi:10.1103/PhysRevD.100.104031
[62] Weinberg, S., Gravitation and Cosmology (1972), New York: Wiley, New York
[63] Amelino-Camelia, G.; Freidel, L.; Kowalski-Glikman, J.; Smolin, L., The principle of relative locality, Phys. Rev. D, 84 (2011) · Zbl 1263.83064 · doi:10.1103/PhysRevD.84.084010
[64] Gubitosi, G.; Mercati, F., Relative locality in κ-Poincaré, Class. Quantum Grav., 30 (2013) · Zbl 1273.83066 · doi:10.1088/0264-9381/30/14/145002
[65] Lobo, I. P.; Palmisano, G.; Lobo, I. P.; Palmisano, G., Geometric interpretation of Planck-scale-deformed co-products, Int. J. Mod. Phys. Conf. Ser., 41 (2016) · doi:10.1142/S2010194516601265
[66] Kowalski-Glikman, J., De sitter space as an arena for doubly special relativity, Phys. Lett. B, 547, 291-6 (2002) · Zbl 0999.83005 · doi:10.1016/S0370-2693(02)02762-4
[67] Magueijo, J.; Smolin, L., Gravity’s rainbow, Class.Quant.Grav., 21, 1725-36 (2004) · Zbl 1051.83004 · doi:10.1088/0264-9381/21/7/001
[68] Battisti, M. V.; Meljanac, S., Scalar field theory on non-commutative snyder space-time, Phys. Rev. D, 82 (2010) · doi:10.1103/PhysRevD.82.024028
[69] Meljanac, S.; Meljanac, D.; Samsarov, A.; Stojic, M., Lie algebraic deformations of Minkowski space with Poincare algebra (2009)
[70] Relancio, J. J.; Liberati, S., Phenomenological consequences of a geometry in the cotangent bundle, Phys. Rev. D, 101 (2020) · doi:10.1103/PhysRevD.101.064062
[71] Relancio, J. J.; Liberati, S., Towards a geometrical interpretation of rainbow geometries, Class. Quantum Grav., 38 (2021) · Zbl 1481.83087 · doi:10.1088/1361-6382/ac05d7
[72] Pfeifer, C.; Relancio, J. J., Deformed relativistic kinematics on curved spacetime: a geometric approach, Eur. Phys. J. C, 82, 150 (2022) · doi:10.1140/epjc/s10052-022-10066-w
[73] Synge, J. L., Relativity: The General Theory (1960), Amsterdam: North-Holland Publishing Company, Amsterdam · Zbl 0090.18504
[74] DeWitt, B. S., Dynamical Theory of Groups and Fields (Documents on Modern Physics) (1965), New York: Gordon and Breach, Science Publishers, Inc., New York
[75] Borowiec, A.; Pachol, A., Classical basis for kappa-Poincare algebra and doubly special relativity theories, J. Phys. A, 43 (2010) · Zbl 1186.81073 · doi:10.1088/1751-8113/43/4/045203
[76] DeWitt, B. S., Point transformations in quantum mechanics, Phys. Rev., 85, 653-61 (1952) · Zbl 0048.44104 · doi:10.1103/PhysRev.85.653
[77] DeWitt, B. S., Dynamical theory in curved spaces. 1. A review of the classical and quantum action principles, Rev. Mod. Phys., 29, 377-97 (1957) · Zbl 0118.23301 · doi:10.1103/RevModPhys.29.377
[78] Lukierski, J.; Ruegg, H.; Nowicki, A.; Tolstoy, V. N., q-deformation of poincaré algebra, Phys. Lett. B, 264, 331-8 (1991) · doi:10.1016/0370-2693(91)90358-W
[79] Golfand, Y. A., On the introduction of an “elementary length” in the relativistic theory of elementary particles, Zh. Eksp. Teor. Fiz., 37, 504-9 (1959)
[80] Golfand, Y. A., Quantum field theory in constant curvature p-space, Zh. Eksp. Teor. Fiz., 43, 256-67 (1962)
[81] Mir-Kasimov, R. M., “Focusing” singularity in p-space of constant curvature, JETP, 22, 629 (1966)
[82] Mir-Kasimov, R. M., Mass renormalization in generalized field theory, JETP, 22, 807 (1966)
[83] Mir-Kasimov, R. M., The coulomb field and the nonrelativistic quantization of space, JETP, 25, 348 (1967)
[84] Kadyshevsky, V. G.; Mateev, M. D., Quantum field theory and a new universal high-energy scale: the scalar model, Nuovo Cim. A, 87, 324 (1985) · doi:10.1007/BF02902225
[85] Donkov, A. D.; Ibadov, R. M.; Kadyshevsky, V. G.; Mateev, M. D.; Chizhov, M. V., Quantum field theory and a new universal high-energy scale: dirac fields, Nuovo Cim. A, 87, 373 (1985) · doi:10.1007/BF02902360
[86] Pascu, G., Atlas of coordinate charts on de sitter spacetime (2012)
[87] Dimitrijevic, M.; Jonke, L.; Moller, L.; Tsouchnika, E.; Wess, J.; Wohlgenannt, M., Deformed field theory on kappa space-time, Eur. Phys. J. C, 31, 129-38 (2003) · Zbl 1032.81529 · doi:10.1140/epjc/s2003-01309-y
[88] Freidel, L.; Kowalski-Glikman, J.; Nowak, S., Field theory on kappa-Minkowski space revisited: Noether charges and breaking of Lorentz symmetry, Int. J. Mod. Phys. A, 23, 2687-718 (2008) · Zbl 1178.81257 · doi:10.1142/S0217751X08040421
[89] Meljanac, S.; Samsarov, A., Scalar field theory on kappa-Minkowski spacetime and translation and Lorentz invariance, Int. J. Mod. Phys. A, 26, 1439-68 (2011) · Zbl 1214.81285 · doi:10.1142/S0217751X11051536
[90] Girelli, F.; Livine, E. R., Scalar field theory in Snyder space-time: alternatives, J. High Energy Phys., JHEP03(2011)132 (2011) · Zbl 1301.81270 · doi:10.1007/JHEP03(2011)132
[91] Meljanac, S.; Samsarov, A.; Trampetic, J.; Wohlgenannt, M., Scalar field propagation in the φ^4 kappa-Minkowski model, J. High Energy Phys., JHEP12(2011)010 (2011) · Zbl 1306.81305 · doi:10.1007/JHEP12(2011)010
[92] Meljanac, S.; Mignemi, S.; Trampetic, J.; You, J., Nonassociative Snyder φ^4 quantum field theory, Phys. Rev. D, 96 (2017) · doi:10.1103/PhysRevD.96.045021
[93] Meljanac, S.; Meljanac, D.; Mignemi, S.; Strajn, R., Quantum field theory in generalised Snyder spaces, Phys. Lett. B, 768, 321-5 (2017) · Zbl 1370.81165 · doi:10.1016/j.physletb.2017.02.059
[94] Mercati, F.; Sergola, M., Pauli-Jordan function and scalar field quantization in κ-Minkowski noncommutative spacetime, Phys. Rev. D, 98 (2018) · doi:10.1103/PhysRevD.98.045017
[95] Franchino-Viñas, S. A.; Mignemi, S., Worldline formalism in snyder spaces, Phys. Rev. D, 98 (2018) · Zbl 1473.81169 · doi:10.1103/PhysRevD.98.065010
[96] Groenewold, H. J., On the Principles of elementary quantum mechanics, Physica, 12, 405-60 (1946) · Zbl 0060.45002 · doi:10.1016/S0031-8914(46)80059-4
[97] Meljanac, S.; Skoda, Z.; Svrtan, D., Exponential formulas and Lie algebra type star products, SIGMA, 8, 013 (2012) · Zbl 1248.81092 · doi:10.3842/SIGMA.2012.013
[98] Mercati, F.; Sitarz, A., κ-Minkowski differential calculi and star product, p 030 (2010)
[99] Meljanac, S.; Štrajn, R., Deformed quantum phase spaces, realizations, star products and twists, SIGMA, 18, 022 (2022) · Zbl 1489.81041 · doi:10.3842/SIGMA.2022.022
[100] Birrell, N. D.; Davies, P. C W., Quantum Fields in Curved Space (Cambridge Monographs on Mathematical Physics) (1984), Cambridge: Cambridge University Press, Cambridge · Zbl 0972.81605
[101] Carmona, J. M.; Cortés, J. L.; Relancio, J. J., Relativistic deformed kinematics from locality conditions in a generalized spacetime, Phys. Rev. D, 101 (2020) · doi:10.1103/PhysRevD.101.044057
[102] Jurić, T.; Meljanac, S.; Pikutić, D.; Štrajn, R., Toward the classification of differential calculi on κ-Minkowski space and related field theories, J. High Energy Phys., JHEP07(2015)055 (2015) · Zbl 1388.83537 · doi:10.1007/JHEP07(2015)055
[103] Andrade, F. M.; Silva, E. O.; Ferreira, M. M.; Rodrigues, E. C., On the κ-Dirac Oscillator revisited, Phys. Lett. B, 731, 327-30 (2014) · Zbl 1368.81100 · doi:10.1016/j.physletb.2014.02.054
[104] Hollands, S., A General PCT theorem for the operator product expansion in curved space-time, Commun. Math. Phys., 244, 209-44 (2004) · Zbl 1063.81084 · doi:10.1007/s00220-003-0991-5
[105] Hollands, S.; Wald, R. M., Axiomatic quantum field theory in curved spacetime, Commun. Math. Phys., 293, 85-125 (2010) · Zbl 1193.81076 · doi:10.1007/s00220-009-0880-7
[106] Kowalski-Glikman, J., De sitter space as an arena for doubly special relativity, Phys. Lett. B, 547, 291-6 (2002) · Zbl 0999.83005 · doi:10.1016/S0370-2693(02)02762-4
[107] Carmona, J. M.; Cortes, J. L.; Relancio, J. J., Beyond Special Relativity at second order, Phys. Rev. D, 94 (2016) · doi:10.1103/PhysRevD.94.084008
[108] Ballesteros, A.; Herranz, F. J.; del Olmo, M. A.; Santander, M., 4-D quantum affine algebras and space-time q symmetries, J. Math. Phys., 35, 4928-40 (1994) · Zbl 0833.17014 · doi:10.1063/1.530823
[109] Ballesteros, A.; Herranz, F. J.; Del Olmo, M. A.; Santander, M., Quantum (2+1) kinematical algebras: a global approach, J. Phys. A: Math. Gen., 27, 1283-97 (1994) · Zbl 0819.17015 · doi:10.1088/0305-4470/27/4/021
[110] Dabrowski, L.; Godlinski, M.; Piacitelli, G., Lorentz Covariant k-Minkowski Spacetime, Phys. Rev. D, 81 (2010) · doi:10.1103/PhysRevD.81.125024
[111] Arzano, M.; Kowalski-Glikman, J.; Wislicki, W., A bound on Planck-scale deformations of CPT from muon lifetime, Phys. Lett. B, 794, 41-44 (2019) · doi:10.1016/j.physletb.2019.05.025
[112] Arzano, M.; Kowalski-Glikman, J.; Wislicki, W., Planck-scale deformation of CPT and particle lifetimes (2020)
[113] Arzano, M.; Kowalski-Glikman, J., Deformed discrete symmetries, Phys. Lett. B, 760, 69-73 (2016) · Zbl 1398.17009 · doi:10.1016/j.physletb.2016.06.048
[114] Carmona, J. M.; Cortés, J. L.; Relancio, J. J., Particle-antiparticle asymmetry in relativistic deformed kinematics, Symmetry, 13, 1266 (2021) · doi:10.3390/sym13071266
[115] Wald, R. M., Quantum Field Theory in Curved Space-Time and Black Hole Thermodynamics (Chicago Lectures in Physics) (1995), Chicago, IL: University of Chicago Press, Chicago, IL
[116] Arzano, M., Anatomy of a deformed symmetry: field quantization on curved momentum space, Phys. Rev. D, 83 (2011) · doi:10.1103/PhysRevD.83.025025
[117] Mathieu, P.; Wallet, J-C, Gauge theories on κ-Minkowski spaces: twist and modular operators, J. High Energy Phys., JHEP05(2020)112 (2020) · Zbl 1437.83041 · doi:10.1007/JHEP05(2020)112
[118] Mathieu, P.; Wallet, J-C, Twisted BRST symmetry in gauge theories on the κ-Minkowski spacetime, Phys. Rev. D, 103 (2021) · doi:10.1103/PhysRevD.103.086018
[119] Ivetić, B., Classical electrodynamics on Snyder space, Phys. Rev. D, 100 (2019) · doi:10.1103/PhysRevD.100.115047
[120] Harikumar, E.; Juric, T.; Meljanac, S., Electrodynamics on κ-Minkowski space-time, Phys. Rev. D, 84 (2011) · doi:10.1103/PhysRevD.84.085020
[121] Franchino-Viñas, S. A.; Mignemi, S., Asymptotic freedom for \(####\) QFT in Snyder-de Sitter space, Eur. Phys. J. C, 80, 382 (2020) · Zbl 1473.81169 · doi:10.1140/epjc/s10052-020-7918-6
[122] Franchino-Viñas, S. A.; Mignemi, S., The Snyder-de Sitter scalar \(####\) quantum field theory in D=2, Nucl. Phys. B, 981 (2022) · Zbl 1498.81099 · doi:10.1016/j.nuclphysb.2022.115871
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.