×

Hall Lie algebras of toric monoid schemes. (English) Zbl 1540.14006

Summary: We associate to a projective \(n\)-dimensional toric variety \(X_\Delta\) a pair of co-commutative (but generally non-commutative) Hopf algebras \(H^\alpha_X\), \(H^T_X\). These arise as Hall algebras of certain categories \(\mathrm{Coh}^\alpha(X)\), \(\mathrm{Coh}^T(X)\) of coherent sheaves on \(X_\Delta\) viewed as a monoid scheme – i.e. a scheme obtained by gluing together spectra of commutative monoids rather than rings. When \(X_\Delta\) is smooth, the category \(\mathrm{Coh}^T(X)\) has an explicit combinatorial description as sheaves whose restriction to each \(\mathbb{A}^n\) corresponding to a maximal cone \(\sigma\in\Delta\) is determined by an \(n\)-dimensional generalized skew shape. The (non-additive) categories \(\mathrm{Coh}^\alpha(X)\), \(\mathrm{Coh}^T(X)\) are treated via the formalism of proto-exact/proto-abelian categories developed by Dyckerhoff-Kapranov. The Hall algebras \(H^\alpha_X\), \(H^T_X\) are graded and connected, and so enveloping algebras \(H^\alpha_X \simeq U(\mathfrak{n}^\alpha_X)\), \(H^T_X \simeq U(\mathfrak{n}^T_X)\), where the Lie algebras \(\mathfrak{n}^\alpha_X\), \(\mathfrak{n}^T_X\) are spanned by the indecomposable coherent sheaves in their respective categories. We explicitly work out several examples, and in some cases are able to relate \(\mathfrak{n}^T_X\) to known Lie algebras. In particular, when \(X = \mathbb{P}^1, \mathfrak{n}^T_X\) is isomorphic to a non-standard Borel in \(\mathfrak{gl}_2[t, t^{-1}]\). When \(X\) is the second infinitesimal neighborhood of the origin inside \(\mathbb{A}^2\), \(\mathfrak{n}^T_X\) is isomorphic to a subalgebra of \(\mathfrak{gl}_2[t]\). We also consider the case \(X = \mathbb{P}^2\), where we give a basis for \(\mathfrak{n}^T_X\) by describing all indecomposable sheaves in \(\mathrm{Coh}^T(X)\).

MSC:

14A23 Geometry over the field with one element
14M25 Toric varieties, Newton polyhedra, Okounkov bodies
16T05 Hopf algebras and their applications
16S30 Universal enveloping algebras of Lie algebras
05E10 Combinatorial aspects of representation theory
05E14 Combinatorial aspects of algebraic geometry

References:

[1] Baumann, P.; Kassel, C., The Hall algebra of the category of coherent sheaves on the projective line, J. Reine Angew. Math., 533, 207-233 (2001) · Zbl 0967.18005 · doi:10.1515/crll.2001.031
[2] Burban, I.; Schiffmann, O., On the Hall algebra of an elliptic curve, I, Duke Math. J., 161, 7, 1171-1231 (2012) · Zbl 1286.16029 · doi:10.1215/00127094-1593263
[3] Chu, C.; Lorscheid, O.; Santhanam, R., Sheaves and \(K\)-theory for \({\mathbb{F} }_1\)-schemes, Adv. Math., 229, 4, 2239-2286 (2012) · Zbl 1288.19004 · doi:10.1016/j.aim.2011.12.023
[4] Connes, A., Consani, C.: On Absolute Algebraic Geometry, the affine case. Preprint arXiv:1909.09796
[5] Connes, A.; Consani, C., Schemes over \(\mathbb{F}_1\) and zeta functions, Compositio Mathematica, 146, 6, 2239-2286 (2010) · Zbl 1201.14001 · doi:10.1112/S0010437X09004692
[6] Connes, A.; Consani, C., On the notion of geometry over \({\mathbb{F} }_1\), J. Algebraic Geom., 20, 3, 525-557 (2011) · Zbl 1227.14006 · doi:10.1090/S1056-3911-2010-00535-8
[7] Connes, A.; Consani, C.; Marcolli, M., Fun with \({\mathbb{F} }_1\), J. Number Theory, 129, 6, 1532-1561 (2009) · Zbl 1228.11143 · doi:10.1016/j.jnt.2008.08.007
[8] Cortinas, G.; Haesemeyer, C.; Walker, ME; Weibel, C., Toric varieties, monoid schemes and cdh descent, J. Reine Angew. Math., 698, 1-54 (2015) · Zbl 1331.14050 · doi:10.1515/crelle-2012-0123
[9] Connes, A.; Kreimer, D., Hopf algebras, renormalization and noncommutative geometry, Comm. Math. Phys., 199, 1, 203-242 (1998) · Zbl 0932.16038 · doi:10.1007/s002200050499
[10] Chang, L.N., Lewis, Z., Minic, D., Takeuchi, T.: Quantum \({{\mathbb{F}}_{{\rm un}}} \): the q = 1 limit of Galois field quantum mechanics, projective geometry and the field with one element. J. Phys. A: Math. Theor. 40(147) (2014) doi:10.1088/1751-8113/47/40/405304 · Zbl 1311.81011
[11] Cox, D., Little, J.B., Schenck, H.K.: Toric Varieties. American Mathematical Soc. (2011) · Zbl 1223.14001
[12] Deitmar, A., \({\mathbb{F} }_1\)-schemes and toric varieties, Beitrage Algebra Geom., 49, 2, 517-525 (2008) · Zbl 1152.14001
[13] Deitmar, A.: Schemes over \({\mathbb{F}}_1\), Number fields and function fields—two parallel worlds. Progr. Math., vol. 239, pp. 87-100. Birkhauser Boston, Boston, MA (2005) · Zbl 1078.11002
[14] Deitmar, A., Remarks on zeta functions and \(K\)-theory over \({{ F}}_1\), Proc. Jpn. Acad. Ser. A Math. Sci., 82, 8, 141-146 (2006) · Zbl 1173.14004
[15] Durov, N.: New approach to Arakelov geometry. Preprint arXiv:0704.2030
[16] Dyckerhoff, T.: Higher categorical aspects of Hall algebras, Building bridges between algebra and topology. Adv. Courses Math, pp. 1.61. CRM Barcelona, Birkhauser/Springer, Cham (2018) · Zbl 1404.16016
[17] Dyckerhoff, T., Kapranov, M.: Higher Segal spaces. Lecture Notes in Mathematics, vol. 2244. Springer, Cham (2019) · Zbl 1459.18001
[18] Eppolito, C., Jun, J., Szczesny, M.: Proto-exact categories of matroids, Hall algebras, and K-theory. Math. Zeit. (2019)
[19] James, A., Green, Hall algebras, hereditary algebras and quantum groups, Invent. Math., 120, 2, 361-377 (1995) · Zbl 0836.16021
[20] Hekking, J.: Segal Objects in Homotopical Categories & K-theory of Proto-exact Categories, Master’s Thesis, Univ. of Utrecht, 2017. https://www.universiteitleiden.nl/binaries/content/assets/science/mi/scripties/master/hekking_master.pdf
[21] Haesemeyer, C., Weibel, C.A.: The \(K^{\prime }\)-theory of monoid sets. Proc. Am. Math. Soc. 149(7), 2813-2824 (2021) · Zbl 1478.19002
[22] Hubery, A., From Triangulated Categories to Lie Algebras: a theorem of Peng and Xiao, Trends in Representation Theory of Algebras and Related Topics, Contemp. Math., 406, 51-66 (2006) · Zbl 1107.16021 · doi:10.1090/conm/406/07653
[23] Kato, K., Toric singularities, Am. J. Math., 116, 5, 1073-1099 (1994) · Zbl 0832.14002 · doi:10.2307/2374941
[24] Kapranov, M., Eisenstein series and quantum affine algebras, J. Math. Sci., 84, 5, 1311-1360 (1997) · Zbl 0929.11015 · doi:10.1007/BF02399194
[25] Kapranov, M., Schiffmann, O., Vasserot, E.: The Hall algebra of a curve. Selecta Math. (N.S.) 23(1), 117-177 (2017) · Zbl 1366.16026
[26] Kapranov, M., Vasserot, E.: The cohomological Hall algebra of a surface and factorization cohomology. arXiv:1901.07641
[27] Kapranov, M.; Vasserot, E., Kleinian singularities, derived categories and Hall algebras, Math. Ann., 316, 3, 565-576 (2000) · Zbl 0997.14001 · doi:10.1007/s002080050344
[28] Kremnizer, K.; Szczesny, M., Feynman graphs, rooted trees, and Ringel-Hall algebras, Commun. Math. Phys., 289, 2, 561-577 (2009) · Zbl 1173.81008 · doi:10.1007/s00220-008-0694-z
[29] Lorscheid, O.: \({\mathbb{F}}_1\) for Everyone. Ahresbericht der Deutschen Mathematiker-Vereinigung 120(2), 83-116 (2018) · Zbl 1430.14005
[30] Lorscheid, O.; Szczesny, M., Quasicoherent sheaves on projective schemes over \(\mathbb{F}_1\), J. Pure Appl. Algebra, 222, 6, 1337-1354 (2018) · Zbl 1420.14006 · doi:10.1016/j.jpaa.2017.07.001
[31] Loday, J-L; Ronco, M., Combinatorial Hopf algebras, Quanta Maths, 11, 347-383 (2010) · Zbl 1217.16033
[32] Pirashvili, I., On cohomology and vector bundles over monoid schemes, J. Algebra, 435, 33-51 (2015) · Zbl 1405.14046 · doi:10.1016/j.jalgebra.2015.04.008
[33] Hall algebras and quantum groups, Invent. Math., 101, 3, 583-591 (1990) · Zbl 0735.16009 · doi:10.1007/BF01231516
[34] Schiffmann, O.: Lectures on Hall algebras, Geometric methods in representation theory. II, Semin. Congr., 24-II, Soc. Math. France, Paris, 1-141 (2012) · Zbl 1309.18012
[35] Schiffmann, O., On the Hall algebra of an elliptic curve, II, Duke Math. J., 161, 9, 1711-1750 (2012) · Zbl 1253.14018 · doi:10.1215/00127094-1593362
[36] Schiffmann, O.; Vasserot, E., The elliptic Hall algebra, Cherednik Hecke algebras and Macdonald polynomials, Compos. Math., 147, 1, 188-234 (2011) · Zbl 1234.20005 · doi:10.1112/S0010437X10004872
[37] Soule, C., Les varietes sur le corpsa un element, Mosc. Math. J, 4, 1, 217-244 (2004) · Zbl 1103.14003 · doi:10.17323/1609-4514-2004-4-1-217-244
[38] William, R., Schmitt, Incidence Hopf algebras, J. Pure Appl. Algebra, 96, 3, 299-330 (1994) · Zbl 0808.05101 · doi:10.1016/0022-4049(94)90105-8
[39] Szczesny, M., Incidence categories, J. Pure Appl. Algebra, 215, 4, 303-309 (2011) · Zbl 1215.18008 · doi:10.1016/j.jpaa.2010.04.020
[40] Szczesny, M., On the Hall algebra of coherent sheaves on \(\mathbb{P}^1\) over \(\mathbb{F}_1\), J. Pure Appl. Algebra, 216, 3, 662-672 (2012) · Zbl 1279.14022 · doi:10.1016/j.jpaa.2011.08.001
[41] Szczesny, M., Representations of quivers over \(\mathbb{F}_1\) and Hall algebras, Int. Math. Res. Not., 2012, 10, 2377-2404 (2012) · Zbl 1288.14012
[42] Szczesny, M., On the Hall algebra of semigroup representations over \(\mathbb{F}_1\), Math. Z., 276, 1-2, 371-386 (2014) · Zbl 1342.20061 · doi:10.1007/s00209-013-1204-3
[43] Szczesny, M., The Hopf algebra of skew shapes, torsion sheaves on \({\mathbb{A} }_{/{\mathbb{F} }_1}^n\), and ideals in Hall algebras of monoid representations, Adv. Math., 331, 209-238 (2018) · Zbl 1432.16029 · doi:10.1016/j.aim.2018.03.032
[44] Takeuchi, M., Free Hopf algebras generated by coalgebras, J. Math. Soc. Jpn., 23, 4, 561-582 (1971) · Zbl 0217.05902 · doi:10.2969/jmsj/02340561
[45] Au-dessous de Spec \({\mathbb{Z} } \), J. K-theory, 3, 3, 437-500 (2000) · Zbl 1177.14022
[46] von Bothmer, H.-C.G., Hinsch, L., Stuhler, U.: Vector bundles over projective spaces. The case \({\mathbb{F}}_1\). Arch. Math. (Basel) 96(3), 227-234 (2011). doi:10.1007/s00013-011-0225-6 · Zbl 1220.14009
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.