×

Chirality in the plane. (English) Zbl 1481.74046

Summary: It is well-known that many three-dimensional chiral material models become non-chiral when reduced to two dimensions. Chiral properties of the two-dimensional model can then be restored by adding appropriate two-dimensional chiral terms. In this paper we show how to construct a three-dimensional chiral energy function which can achieve two-dimensional chirality induced already by a chiral three-dimensional model. The key ingredient to this approach is the consideration of a nonlinear chiral energy containing only rotational parts. After formulating an appropriate energy functional, we study the equations of motion and find explicit soliton solutions displaying two-dimensional chiral properties.

MSC:

74A35 Polar materials
74J35 Solitary waves in solid mechanics
74J30 Nonlinear waves in solid mechanics
74A30 Nonsimple materials

References:

[1] Arteaga, O.; Sancho-Parramon, J.; Nichols, S.; Maoz, B. M.; Canillas, A.; Bosch, S.; Markovich, G.; Kahr, B., Relation between 2d/3d chirality and the appearance of chiroptical effects in real nanostructures, Opt. Express, 24, 3, 2242-2252 (2016)
[2] Bahamonde, S.; Böhmer, C. G.; Neff, P., Geometrically nonlinear Cosserat elasticity in the plane: applications to chirality, J. Mech. Mater. Struct., 12, 5, 689-710 (2017)
[3] Bîrsan, M.; Neff, P., On the dislocation density tensor in the Cosserat theory of elastic shells, Advanced Methods of Continuum Mechanics for Materials and Structures, 391-413 (2016), Springer
[4] Bîrsan, M.; Neff, P., Analysis of the deformation of Cosserat elastic shells using the dislocation density tensor, Mathematical Modelling in Solid Mechanics, 13-30 (2017), Springer · Zbl 1387.74074
[5] Böhmer, C. G.; Lee, Y.; Neff, P., Soliton solutions in geometrically nonlinear Cosserat micropolar elasticity with large deformations, Wave Motion, 84, 110-124 (2019) · Zbl 1465.74093
[6] Böhmer, C. G.; Neff, P.; Seymenoğlu, B., Soliton-like solutions based on geometrically nonlinear Cosserat micropolar elasticity, Wave Motion, 60, 158-165 (2016) · Zbl 1467.74012
[7] Chen, Y.; Liu, X.; Hu, G., Micropolar modeling of planar orthotropic rectangular chiral lattices, Comptes Rendus Mécanique, 342, 5, 273-283 (2014)
[8] Chen, Y.; Liu, X. N.; Hu, G.; Zheng, Q. S.Q., Micropolar continuum modelling of bi-dimensional tetrachiral lattices, Proc. Royal Soc. Lond. A, 470, 2165, 20130734 (2014)
[9] Cheverton, K. J.; Beatty, M. F., Extension, torsion and expansion of an incompressible, hemitropic Cosserat circular cylinder, J. Elast., 11, 2, 207-227 (1981) · Zbl 0463.73019
[10] Chiadini, F.; Fiumara, V.; Mackay, T. G.; Scaglione, A.; Lakhtakia, A., Left/right asymmetry in dyakonov-tamm-wave propagation guided by a topological insulator and a structurally chiral material, J. Opt., 18, 11, 115101 (2016)
[11] Librairie Scientifique A. Hermann et Fils (reprint 2009 by Hermann Librairie Scientifique, ISBN 9782705669201). English translation by D. Delphenich 2007, available at http://www.neo-classical-physics.info/uploads/3/4/3/6/34363841/cosserat_chap_i-iii.pdf, http://www.neo-classical-physics.info/uploads/3/4/3/6/34363841/cosserat_chap_iv-vi.pdf. · JFM 40.0862.02
[12] Eringen, A. C., Microcontinuum Field Theories: I. Foundations and Solids (1999), Springer: Springer New York · Zbl 0953.74002
[13] Eringen, A. C.; Suhubi, E. S., Nonlinear theory of simple microelastic solids i, Int. J. Eng. Sci., 2, 189-204 (1964) · Zbl 0138.21202
[14] Eringen, A. C.; Suhubi, E. S., Nonlinear theory of simple microelastic solids II, Int. J. Eng. Sci., 2, 389-404 (1964)
[15] Fedotov, V. A.; Mladyonov, P. L.; Prosvirnin, S. L.; Rogacheva, A. V.; Chen, Y.; Zheludev, N. I., Asymmetric propagation of electromagnetic waves through a planar chiral structure, Phys. Rev. Lett., 97, 16, 167401 (2006)
[16] Forest, S., Micromorphic approach for gradient elasticity, viscoplasticity, and damage, J. Eng. Mech., 135, 3, 117-131 (2009)
[17] Ieşan, D., Thermoelastic deformation of reinforced chiral cylinders, Acta Mech., 228 (2017) · Zbl 1380.74026
[18] Iesan, D.; Nappa, L., Extremum principles and existence results in micromorphic elasticity, Int. J. Eng. Sci., 39, 18, 2051-2070 (2001) · Zbl 1210.74022
[19] Joumaa, H.; Ostoja-Starzewski, M., Stress and couple-stress invariance in non-centrosymmetric micropolar planar elasticity, Proc. Royal Soc. Lond. A, 467, 2134, 2896-2911 (2011) · Zbl 1237.74008
[20] Lakes, R. S., Elastic and viscoelastic behavior of chiral materials, Int. J. Mech. Sci., 43, 7, 1579-1589 (2001) · Zbl 1049.74012
[21] Lakes, R. S.; Benedict, R. L., Noncentrosymmetry in micropolar elasticity, Int. J. Eng. Sci., 20, 10, 1161-1167 (1982) · Zbl 0491.73004
[22] Li, Z.; Gokkavas, M.; Ozbay, E., Manipulation of asymmetric transmission in planar chiral nanostructures by anisotropic loss, Adv. Opt. Mater., 1, 7, 482-488 (2013)
[23] Liu, X. N.; Hu, G. K., Elastic metamaterials making use of chirality: a review, Strojniški Vestnik, 62, 7-8, 403-418 (2016)
[24] Liu, X. N.; Huang, G. L.; Hu, G. K., Analytical formulation of a discrete chiral elastic metamaterial model, Health Monitoring of Structural and Biological Systems 2012, 8348, 823-834 (2012), International Society for Optics and Photonics
[25] Liu, X. N.; Huang, G. L.; Hu, G. K., Chiral effect in plane isotropic micropolar elasticity and its application to chiral lattices, J. Mech. Phys. Solids, 60, 11, 1907-1921 (2012)
[26] Ma, X.; Huang, C.; Pu, M.; Wang, Y.; Zhao, Z.; Wang, C.; Luo, X., Dual-band asymmetry chiral metamaterial based on planar spiral structure, Appl. Phys. Lett., 101, 16, 161901 (2012)
[27] Mindlin, R. D., Micro-structure in linear elasticity, Arch. Ration. Mech. Anal., 16, 1, 51-78 (1964) · Zbl 0119.40302
[28] Münch, I.; Neff, P., Rotational invariance conditions in elasticity, gradient elasticity and its connection to isotropy, Math. Mech. Solids, 23, 1, 3-42 (2018) · Zbl 1391.74032
[29] Neff, P., On material constants for micromorphic continua, Trends Appl. Math. Mech. STAMM Proc. Seeheim, 337-348 (2004) · Zbl 1080.74007
[30] Neff, P., Existence of minimizers for a finite-strain micromorphic elastic solid, Proc. Royal Soc. Edinb. Sect. A, 136, 997-1012 (2006) · Zbl 1106.74010
[31] Neff, P., Existence of minimizers in nonlinear elastostatics of micromorphic solids, (Iesan, D., Encyclopedia of Thermal Stresses (2013), Springer: Springer Heidelberg)
[32] Neff, P.; Fischle, A.; Borisov, L., Explicit global minimization of the symmetrized euclidean distance by a characterization of real matrices with symmetric square, SIAM J. Appl. Algebra Geom., 3, 1, 31-43 (2019) · Zbl 1416.15023
[33] Neff, P.; Forest, S., A geometrically exact micromorphic model for elastic metallic foams accounting for affine microstructure. modelling, existence of minimizers, identification of moduli and computational results, J. Elast., 87, 239-276 (2007) · Zbl 1206.74019
[34] Neff, P.; Ghiba, I. D.; Madeo, A.; Placidi, L.; Rosi, G., A unifying perspective: the relaxed linear micromorphic continuum, Contin. Mech. Thermodyn., 26, 639-681 (2014) · Zbl 1341.74135
[35] Neff, P.; Münch, I., Curl bounds grad on SO(3), ESAIM: Contr. Optim. Calculus Variat., 14, 1, 148-159 (2008) · Zbl 1139.74008
[36] Neff, P.; Nakatsukasa, Y.; Fischle, A., A logarithmic minimization property of the unitary polar factor in the spectral and frobenius norms, SIAM J. Matrix Anal. Appl., 35, 3, 1132-1154 (2014) · Zbl 1309.15016
[37] Papakostas, A.; Potts, A.; Bagnall, D. M.; Prosvirnin, S. L.; Coles, H. J.; Zheludev, N. I., Optical manifestations of planar chirality, Phys. Rev. Lett., 90, 10, 107404 (2003)
[38] Papanicolopulos, S. A., Chirality in isotropic linear gradient elasticity, Int. J. Solids Struct., 48, 5, 745-752 (2011) · Zbl 1236.74024
[39] Polyanin, A. D.; Zaitsev, V. F., Handbook of nonlinear partial differential equations (2003), Chapman & Hall/CRC: Chapman & Hall/CRC Boca Raton · Zbl 1024.35001
[40] Prall, D.; Lakes, R. S., Properties of a chiral honeycomb with a Poisson’s ratio of 1, Int. J. Mech. Sci., 39, 3, 305-314 (1997) · Zbl 0894.73018
[41] Raval, R., Chiral expression from molecular assemblies at metal surfaces: insights from surface science techniques, Chem. Soc. Rev., 38, 3, 707-721 (2009)
[42] Smith, S. W., Chiral toxicology: it’s the same thing only different, Toxicol. Sci., 110, 1, 4-30 (2009)
[43] Spadoni, A.; Ruzzene, M., Elasto-static micropolar behavior of a chiral auxetic lattice, J. Mech. Phys. Solids, 60, 1, 156-171 (2012)
[44] Wu, W.; Qi, D.; Liao, H.; Qian, G.; Geng, L.; Niu, Y.; Liang, J., Deformation mechanism of innovative 3d chiral metamaterials, Sci. Rep., 8, 1, 12575 (2018)
[45] Zhang, W.; Neville, R.; Zhang, D.; Scarpa, F.; Wang, L.; Lakes, R., The two-dimensional elasticity of a chiral hinge lattice metamaterial, Int. J. Solids Struct., 141, 254-263 (2018)
[46] Zhang, W.; Potts, A.; Bagnall, D. M., Giant optical activity in dielectric planar metamaterials with two-dimensional chirality, J. Opt. A, 8, 10, 878 (2006)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.