×

Numerical dispersion free in longitudinal axis for particle-in-cell simulation. (English) Zbl 07536727

Summary: We introduce a new scheme for a field solver for particle-in-cell simulations; it uses \(P\)- and \(S\)-polarized variables in the modified Maxwell equations to eliminate numerical dispersion along the longitudinal axis. By obtaining numerical stability of the dispersion relation, the scheme has two major advantages of simulating the exact laser group velocity and the exact electron beam propagation. Those advantages are important for simulations of laser wakefield acceleration in a low-density plasma, and of the propagation of an electron beam that has low emittance. The scheme is implemented in multi-dimensional Cartesian and cylindrical coordinates following Fourier decomposition of the azimuthal direction. Results of both calculations compare well with results of three-dimensional simulations.

MSC:

82Dxx Applications of statistical mechanics to specific types of physical systems
76Mxx Basic methods in fluid mechanics
65Mxx Numerical methods for partial differential equations, initial value and time-dependent initial-boundary value problems

Software:

QUICKPIC; OSIRIS; Smilei; PSC
Full Text: DOI

References:

[1] Germaschewski, K.; Fox, W.; Abbott, S.; Ahmadi, N.; Maynard, K.; Wang, L.; Ruhl, H.; Bhattacharjee, A., The Plasma Simulation Code: a modern particle-in-cell code with patch-based load-balancing, J. Comput. Phys., 318, 305-326 (2016) · Zbl 1349.76917
[2] Fonseca, R. A.; Silva, L. O.; Tsung, F. S.; Decyk, V. K.; Lu, W.; Ren, C.; Mori, W. B.; Deng, S.; Lee, S.; Katsouleas, T.; Adam, J. C., OSIRIS: a three-dimensional, fully relativistic particle in cell code for modeling plasma based accelerators, (Lect. Notes Comput. Sci. (Including Subser. Lect. Notes Artif. Intell. Lect. Notes Bioinformatics) (2002)), 342 · Zbl 1053.81100
[3] Pukhov, A., Three-dimensional electromagnetic relativistic particle-in-cell code VLPL (virtual laser plasma lab), J. Plasma Phys., 61, 425 (1999)
[4] Lefebvre, E.; Cochet, N.; Fritzler, S.; Malka, V.; Aléonard, M. M.; Chemin, J. F.; Darbon, S.; Disdier, L.; Faure, J.; Fedotoff, A.; Landoas, O.; Malka, G.; Méot, V.; Morel, P.; Rabec Le Gloahec, M.; Rouyer, A.; Rubbelynck, C.; Tikhonchuk, V.; Wrobel, R.; Audebert, P.; Rousseaux, C., Electron and photon production from relativistic laser-plasma interactions, Nucl. Fusion, 43, 629 (2003)
[5] Nieter, C.; Cary, J. R., VORPAL as a tool for the study of laser pulse propagation in LWFA, (Lect. Notes Comput. Sci. (Including Subser. Lect. Notes Artif. Intell. Lect. Notes Bioinformatics) (2002)) · Zbl 1053.81105
[6] Bowers, K. J.; Albright, B. J.; Bergen, B.; Yin, L.; Barker, K. J.; Kerbyson, D. J., 0.374 Pflop/s trillion-particle kinetic modeling of laser plasma interaction on roadrunner, (2008 SC - Int. Conf. High Perform. Comput. Networking. 2008 SC - Int. Conf. High Perform. Comput. Networking, Storage Anal. SC 2008. (2008)), 1-11
[7] Bussmann, M.; Burau, H.; Cowan, T. E.; Debus, A.; Huebl, A.; Juckeland, G.; Kluge, T.; Nagel, W. E.; Pausch, R.; Schmitt, F.; Schramm, U.; Schuchart, J.; Widera, R., Radiative signatures of the relativistic Kelvin-Helmholtz instability, (Proc. Int. Conf. High Perform. Comput. Networking, Storage Anal. (2013), ACM: ACM New York, NY, USA), 1-12
[8] Vay, J.-L.; Huebl, A.; Almgren, A.; Amorim, L. D.; Bell, J.; Fedeli, L.; Ge, L.; Gott, K.; Grote, D. P.; Hogan, M.; Jambunathan, R.; Lehe, R.; Myers, A.; Ng, C.; Rowan, M.; Shapoval, O.; Thévenet, M.; Vincenti, H.; Yang, E.; Zaïm, N.; Zhang, W.; Zhao, Y.; Zoni, E., Modeling of a chain of three plasma accelerator stages with the WarpX electromagnetic PIC code on GPUs, Phys. Plasmas, 28, Article 023105 pp. (2021)
[9] Derouillat, J.; Beck, A.; Pérez, F.; Vinci, T.; Chiaramello, M.; Grassi, A.; Flé, M.; Bouchard, G.; Plotnikov, I.; Aunai, N.; Dargent, J.; Riconda, C.; Grech, M., Smilei: a collaborative, open-source, multi-purpose particle-in-cell code for plasma simulation, Comput. Phys. Commun., 222, 351-373 (2018) · Zbl 07693056
[10] Arber, T. D.; Bennett, K.; Brady, C. S.; Lawrence-Douglas, A.; Ramsay, M. G.; Sircombe, N. J.; Gillies, P.; Evans, R. G.; Schmitz, H.; Bell, A. R.; Ridgers, C. P., Contemporary particle-in-cell approach to laser-plasma modelling, Plasma Phys. Control. Fusion, 57 (2015)
[11] Mora, P.; Antonsen, T. M., Electron cavitation and acceleration in the wake of an ultraintense, self-focused laser pulse, Phys. Rev. E, Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics, 53, Article R2068 pp. (1996)
[12] Huang, C.; Decyk, V. K.; Ren, C.; Zhou, M.; Lu, W.; Mori, W. B.; Cooley, J. H.; Antonsen, T. M.; Katsouleas, T., QUICKPIC: a highly efficient particle-in-cell code for modeling wakefield acceleration in plasmas, J. Comput. Phys., 217, 658 (2006) · Zbl 1178.76293
[13] Sosedkin, A. P.; Lotov, K. V., LCODE: a parallel quasistatic code for computationally heavy problems of plasma wakefield acceleration, Nucl. Instrum. Methods Phys. Res., Sect. A, Accel. Spectrom. Detect. Assoc. Equip., 829, 350-352 (2016)
[14] Mehrling, T.; Benedetti, C.; Schroeder, C. B.; Osterhoff, J., HiPACE: a quasi-static particle-in-cell code, Plasma Phys. Control. Fusion, 56, Article 084012 pp. (2014)
[15] Lifschitz, A. F.; Davoine, X.; Lefebvre, E.; Faure, J.; Rechatin, C.; Malka, V., Particle-in-Cell modelling of laser-plasma interaction using Fourier decomposition, J. Comput. Phys., 228, 1803 (2009) · Zbl 1166.78303
[16] Davidson, A.; Tableman, A.; An, W.; Tsung, F. S.; Lu, W.; Vieira, J.; Fonseca, R. A.; Silva, L. O.; Mori, W. B., Implementation of a hybrid particle code with a PIC description in r-z and a gridless description in ϕ into OSIRIS, J. Comput. Phys., 281, 1063 (2015) · Zbl 1351.82102
[17] Godfrey, B. B., Numerical Cherenkov instabilities in electromagnetic particle codes, J. Comput. Phys., 15, 504 (1974)
[18] Lehe, R.; Lifschitz, A.; Thaury, C.; Malka, V.; Davoine, X., Numerical growth of emittance in simulations of laser-wakefield acceleration, Phys. Rev. Spec. Top., Accel. Beams, 16, Article 021301 pp. (2013)
[19] Blinne, A.; Schinkel, D.; Kuschel, S.; Elkina, N.; Rykovanov, S. G.; Zepf, M., A systematic approach to numerical dispersion in Maxwell solvers, Comput. Phys. Commun., 224, 273-281 (2018) · Zbl 07694310
[20] Nuter, R.; Grech, M.; Gonzalez De Alaiza Martinez, P.; Bonnaud, G.; D’Humières, E., Maxwell solvers for the simulations of the laser-matter interaction, Eur. Phys. J. D, 68 (2014)
[21] Pukhov, A., X-dispersionless Maxwell solver for plasma-based particle acceleration, J. Comput. Phys., 418, Article 109622 pp. (2020) · Zbl 07506175
[22] Vay, J.-L.; Haber, I.; Godfrey, B. B., A domain decomposition method for pseudo-spectral electromagnetic simulations of plasmas, J. Comput. Phys., 243, 260-268 (2013) · Zbl 1349.82126
[23] Lehe, R.; Kirchen, M.; Andriyash, I. A.; Godfrey, B. B.; Vay, J.-L., A spectral, quasi-cylindrical and dispersion-free Particle-In-Cell algorithm, Comput. Phys. Commun., 203, 66-82 (2016) · Zbl 1375.78043
[24] Andriyash, I. A.; Lehe, R.; Lifschitz, A., Laser-plasma interactions with a Fourier-Bessel Particle-in-Cell method, Phys. Plasmas, 23, Article 033110 pp. (2016)
[25] Birdsall, Plasma Physics via Computer Simulation (1991), Taylor & Francis
[26] Wu, H.-C., JPIC & how to make a PIC code (2011), Eprint ArXiv
[27] Cho, M. H., JoPIC, (n.d.)
[28] Cho, M. H.; Kim, Y. K.; Hur, M. S., Measuring the magnetic field of a magnetized plasma using Raman scattering, Appl. Phys. Lett., 104, Article 141107 pp. (2014)
[29] Cho, M. H.; Kim, Y. K.; Suk, H.; Ersfeld, B.; Jaroszynski, D. A.; Hur, M. S., Strong terahertz emission from electromagnetic diffusion near cutoff in plasma, New J. Phys., 17, Article 043045 pp. (2015)
[30] Cho, M. H.; Pathak, V. B.; Kim, H. T.; Nam, C. H., Controlled electron injection facilitated by nanoparticles for laser wakefield acceleration, Sci. Rep., 8, Article 16924 pp. (2018)
[31] Godfrey, B. B.; Langdon, A. B., Stability of the Langdon-Dawson advective algorithm, J. Comput. Phys., 20, 251-255 (1976)
[32] Marder, B., A method for incorporating Gauss’ law into electromagnetic PIC codes, J. Comput. Phys. (1987) · Zbl 0603.65079
[33] Zemzemi, I.; Massimo, F.; Beck, A., Azimuthal decomposition study of a realistic laser profile for efficient modeling of Laser WakeField Acceleration, J. Phys. Conf. Ser., 1596 (2020)
[34] Hadi, M. F.; Mahmoud, S. F.; Elsherbeni, A. Z.; Piket-May, M. J., FDTD modeling challenges of cylindrical structures, (2016 IEEE Antennas Propag. Soc. Int. Symp. APSURSI 2016 - Proc. (2016)), 2023
[35] Boris, J. P., Relativistic plasma simulation-optimization of a hybrid code, (Proc. Fourth Conf. Numer. Simul. Plasmas (1971)), 3
[36] Villasenor, J.; Buneman, O., Rigorous charge conservation for local electromagnetic field solvers, Comput. Phys. Commun., 69, 306 (1992)
[37] Esirkepov, T. Z., Exact charge conservation scheme for Particle-in-Cell simulation with an arbitrary form-factor, Comput. Phys. Commun., 135, 144 (2001) · Zbl 0981.78014
[38] Umeda, T.; Omura, Y.; Tominaga, T.; Matsumoto, H., A new charge conservation method in electromagnetic particle-in-cell simulations, Comput. Phys. Commun., 156, 73 (2003)
[39] Kilian, P.; Muñoz, P. A.; Schreiner, C.; Spanier, F., Plasma waves as a benchmark problem, J. Plasma Phys., 83, Article 707830101 pp. (2017)
[40] Decker, C. D.; Mori, W. B., Group velocity of large-amplitude electromagnetic waves in a plasma, Phys. Rev. E, 51, 1364 (1995)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.