×

X-dispersionless Maxwell solver for plasma-based particle acceleration. (English) Zbl 07506175

Summary: A semi-implicit finite difference time domain (FDTD) numerical Maxwell solver is developed for full electromagnetic Particle-in-Cell (PIC) codes for the simulations of plasma-based acceleration. The solver projects the volumetric Yee lattice into planes transverse to a selected axis (the particle acceleration direction). The scheme – by design – removes the numerical dispersion of electromagnetic waves running parallel the selected axis. The fields locations in the transverse plane are selected so that the scheme is Lorentz-invariant for relativistic transformations along the selected axis. The solver results in “Galilean shift” of transverse fields by exactly one cell per time step. This eases greatly the problem of numerical Cerenkov instability (NCI). The fields positions build rhombi in plane (RIP) patterns. The RIP scheme uses a compact local stencil that makes it perfectly suitable for massively parallel processing via domain decomposition along all three dimensions. No global/local spectral methods are involved.

MSC:

78-XX Optics, electromagnetic theory
76-XX Fluid mechanics

References:

[1] Towards an advanced linear international collider (2019)
[2] Leemans, W.; Esarey, E., Laser-driven plasma-wave electron accelerators, Phys. Today, 62, 3, 44 (2009)
[3] http://eupraxia-project.eu
[4] Joshi, C.; Caldwell, A., Plasma accelerators, (Myers, S.; Schopper, H., Accelerators and Colliders (2013), Springer Berlin Heidelberg: Springer Berlin Heidelberg Berlin, Heidelberg), 592-605, Chap. 12.1
[5] Tajima, T.; Dawson, J. M., Phys. Rev. Lett., 43, 267 (1979)
[6] Esarey, E.; Schroeder, C. B.; Leemans, W. P., Rev. Mod. Phys., 81, 1229 (2009)
[7] Fonseca, R. A.; Martins, S. F.; Silva, L. O.; Tonge, J. W.; Tsung, F. S.; Mori, W. B., One-to-one direct modeling of experiments and astrophysical scenarios: pushing the envelope on kinetic plasma simulations, Plasma Phys. Control. Fusion, 50, Article 124034 pp. (2008)
[8] Pukhov, A., Particle-in-cell codes for plasma-based particle acceleration, CERN Yellow Rep., 1, 181 (2016)
[9] Arber, T. D.; Bennett, K.; Brady, C. S.; Lawrence-Douglas, A.; Ramsay, M. G.; Sircombe, N. J.; Gillies, P.; Evans, R. G.; Schmitz, H.; Bell, A. R.; Ridgers, C. P., Contemporary particle-in-cell approach to laser-plasma modelling, Plasma Phys. Control. Fusion, 57, Article 113001 pp. (2015)
[10] Vay, Jean-Luc; Haber, Irving; Godfrey, Brendan B., A domain decomposition method for pseudo-spectral electromagnetic simulations of plasmas, J. Comput. Phys., 243, 260 (2013) · Zbl 1349.82126
[11] Derouillat, J.; Beck, A.; Perez, F.; Vinci, T.; Chiaramello, M.; Grassi, A.; Fle, M.; Bouchard, G.; Plotnikov, I.; Aunai, N.; Dargent, J.; Riconda, C.; Grech, M., SMILEI: a collaborative, open-source, multi-purpose particle-in-cell code for plasma simulation, Comput. Phys. Commun., 222, 351-373 (2018) · Zbl 07693056
[12] Burau, Heiko; Widera, Renee; Hönig, Wolfgang; Juckeland, Guido; Debus, Alexander; Kluge, Thomas; Bussmann, M., PIConGPU: a fully relativistic particle-in-cell code for a GPU cluster, IEEE Trans. Plasma Sci., 38, 2831-2839 (2010)
[13] https://en.wikipedia.org/wiki/Particle-in-cell
[14] Birdsall, C. K.; Langdon, A. B., Plasma Physics via Computer Simulations (1991), Adam Hilger: Adam Hilger New York
[15] Gonsalves, A. J.; Nakamura, K.; Daniels, J.; Benedetti, C.; Pieronek, C.; de Raadt, T. C.H.; Steinke, S.; Bin, J. H.; Bulanov, S. S.; van Tilborg, J.; Geddes, C. G.R.; Schroeder, C. B.; Toth, Cs.; Esarey, e.; Swanson, K.; Fan-Chiang, L.; Bagdasarov, G.; Bobrova, N.; Gasilov, v.; Korn, G.; Sasorov, P.; Leemans, W. P., Petawatt laser guiding and electron beam acceleration to 8 GeV in a laser-heated capillary discharge waveguide, Phys. Rev. Lett., 122, Article 084801 pp. (2019)
[16] Blumenfeld, I.; Clayton, C. E.; Decker, F.-J.; Hogan, M. J.; Huang, C.; Ischebeck, R.; Iverson, R.; Joshi, C.; Katsouleas, T.; Kirby, N.; Lu, W.; Marsh, K. A.; Mori, W. B.; Muggli, P.; Oz, E.; Siemann, R. H.; Walz, D.; Zhou, M., Energy doubling of 42 GeV electrons in a metre-scale plasma wakefield accelerator, Nature (London), 445, 741 (2007)
[17] Adli, E., Acceleration of electrons in the plasma wakefield of a proton bunch, Nature, 561, 7723, 363 (2018)
[18] Huang, C.; Decyk, V. K.; Ren, C.; Zhou, M.; Lu, W.; Mori, W. B.; Cooley, J. H.; Antonsen, T. M.; Katsouleas, T., QUICKPIC: a highly efficient particle-in-cell code for modeling wakefield acceleration in plasmas, J. Comput. Phys., 217, 658-679 (2006) · Zbl 1178.76293
[19] Lotov, K. V., Fine wakefield structure in the blowout regime of plasma wakefield accelerators, Phys. Rev. Spec. Top., Accel. Beams, 6, Article 061301 pp. (2003)
[20] Mora, P.; Antonsen, Th., Kinetic modeling of intense, short laser pulses propagating in tenuous plasmas, Phys. Plasmas, 4, 217 (1997)
[21] Vay, J.-L., Noninvariance of space- and time-scale ranges under a Lorentz transformation and the implications for the study of relativistic interactions, Phys. Rev. Lett., 98, Article 130405 pp. (2007)
[22] Lehe, Remi; Kirchen, Manuel; Andriyash, Igor A.; Godfrey, Brendan B.; Vay, Jean-Luc, A spectral, quasi-cylindrical and dispersion-free particle-in-cell algorithm, Comput. Phys. Commun., 203, 66-82 (2016) · Zbl 1375.78043
[23] Benedetti, C.; Schroeder, C. B.; Esarey, E.; Leemans, W. P., Efficient modeling of laser-plasma accelerator staging experiments using INF&RNO, AIP Conf. Proc., 1812, Article 050005 pp. (2017)
[24] Godfrey, B., Numerical Cherenkov instabilities in electromagnetic particle codes, J. Comput. Phys., 15, 4, 504-521 (1974)
[25] Yee, K. S., Numerical solution of initial boundary value problems involving Maxwell’s equations in isotropic media, IEEE Trans. Antennas Propag., 14, 302-307 (1966) · Zbl 1155.78304
[26] Vay, J.-L.; Geddes, C. G.R.; Cormier-Michel, E.; Grote, D. P., Numerical methods for instability mitigation in the modeling of laser wakefield accelerators in a Lorentz-boosted frame, J. Comput. Phys., 230, 5908-5929 (2011)
[27] Na, D.-Y.; Nicolini, J. L.; Lee, R.; Borges, B.-H. V.; Omelchenko, Y. A.; Teixeira, F. L., Diagnosing numerical Cherenkov instabilities in relativistic plasma simulations based on general meshes (2019)
[28] Nuter, R.; Tikhonchuk, V., Suppressing the numerical Cherenkov radiation in the Yee numerical scheme, J. Comput. Phys., 305, 664-676 (2016) · Zbl 1349.78099
[29] Lehe, R.; Lifschitz, A.; Thaury, C.; Malka, V., Numerical growth of emittance in simulations of laser-wakefield acceleration, Phys. Rev. Spec. Top., Accel. Beams, 16, Article 021301 pp. (2013)
[30] Cowan, Benjamin M.; Bruhwiler, David L.; Cary, John R.; Cormier-Michel, Estelle; Geddes, Cameron G. R., Generalized algorithm for control of numerical dispersion in explicit time-domain electromagnetic simulations, Phys. Rev. Spec. Top., Accel. Beams, 16, Article 041303 pp. (2013)
[31] Cole, J. B., High-accuracy Yee algorithm based on nonstandard finite differences: new developments and verifications, IEEE Trans. Antennas Propag., 50, 1185-1191 (2002) · Zbl 1368.65134
[32] Yakimenko, V.; Meuren, S.; Del Gaudio, F.; Baumann, C.; Fedotov, A.; Fiuza, F.; Grismayer, T.; Hogan, M. J.; Pukhov, A.; Silva, L. O.; White, G., Prospect of studying nonperturbative QED with beam-beam collisions, Phys. Rev. Lett., 122, Article 190404 pp. (2019)
[33] Lehe, R.; Thaury, C.; Guillaume, E.; Lifschitz, A.; Malka, V., Laser-plasma lens for laser-wakefield accelerators, Phys. Rev. Spec. Top., Accel. Beams, 17, Article 121301 pp. (2014)
[34] Haber, I.; Lee, R.; Klein, H.; Boris, J., Advances in electromagnetic simulation techniques, (Proc. Sixth Conf. on Num. Sim. Plasmas. Proc. Sixth Conf. on Num. Sim. Plasmas, Berkeley, CA (1973)), 46-48
[35] Buneman, O.; Barnes, Barnes; Barnes, C. W., Principles and capabilities of 3-d, E-M particle simulations, J. Comput. Phys., 38, 1 (1980) · Zbl 0439.76098
[36] Lee, P.; Vay, J.-L., Convergence in nonlinear laser wakefield accelerators modeling in a Lorentz-boosted frame, Comput. Phys. Commun., 238, 102-110 (2019)
[37] Sommerfeld, A., Vorlesungen uber Theoretische Physik. Band 3: Elektrodynamik (1948), Dieterichsche Verlagsbuchhandlung: Dieterichsche Verlagsbuchhandlung Wiesbaden · Zbl 0035.12401
[38] Vincenti, H.; Vay, J.-L., Detailed analysis of the effects of stencil spatial variations with arbitrary high-order finite-difference Maxwell solver, Comput. Phys. Commun., 220, 147-167 (2016) · Zbl 1351.78057
[39] Vincenti, H.; Vay, J.-L., Ultrahigh-order Maxwell solver with extreme scalability for electromagnetic PIC simulations of plasmas, Comput. Phys. Commun., 228, 22-29 (July 2018)
[40] Godfrey, B. Brendan, Review and recent advances in PIC modeling of relativistic beams and plasmas (2014)
[41] Godfrey, B. B.; Vay, J.-L., Comput. Phys. Commun., 196, 221-225 (2015)
[42] Li, Fei; Yu, Peicheng; Xu, Xinlu; Fiuza, Frederico; Decyk, Viktor K.; Dalichaouch, Thamine; Davidson, Asher; Tableman, Adam; An, Weiming; Tsung, Frank S.; Fonseca, Ricardo A.; Lu, Wei; Mori, Warren B., Controlling the numerical Cerenkov instability in PIC simulations using a customized finite difference Maxwell solver and a local FFT based current correction, Comput. Phys. Commun., 214, 6-17 (2017) · Zbl 1376.78011
[43] Godfrey, Brendan B.; Vay, Jean-Luc, Improved numerical Cherenkov instability suppression in the generalized PSTD PIC algorithm, Comput. Phys. Commun., 196, 221 (2015)
[44] Lehe, Remi; Kirchen, Manuel; Godfrey, Brendan B.; Maier, Andreas R.; Vay, Jean-Luc, Elimination of numerical Cherenkov instability in flowing-plasma particle-in-cell simulations by using Galilean coordinates, Phys. Rev. E, 94, Article 053305 pp. (2016)
[45] Higuera, A. V.; Cary, J. R., Structure-preserving second-order integration of relativistic charged particle trajectories in electromagnetic fields, Phys. Plasmas, 24, Article 052104 pp. (2017)
[46] Boris, J. P., Relativistic plasma simulation-optimization of a hybrid code, (Proceedings of the Fourth Conference on Numerical Simulation Plasmas Naval Research Laboratory. Proceedings of the Fourth Conference on Numerical Simulation Plasmas Naval Research Laboratory, Washington, D.C. (1970)), 3-67
[47] Vay, J.-L., Simulation of beams or plasmas crossing at relativistic velocity, Phys. Plasmas, 15, Article 056701 pp. (2008)
[48] Esirkepov, T. Z., Exact charge conservation scheme for particle-in-cell simulations with an arbitrary form-factor, Comput. Phys. Commun., 135, 144-153 (2001) · Zbl 0981.78014
[49] Umeda, T. Y.; Omura, T.; Tominaga, T.; Matsumoto, H., A new charge conservation method in electromagnetic particle-in-cell simulations, Comput. Phys. Commun., 156, 73-85 (2003)
[50] Villasenor, John; Buneman, Oscar, Rigorous charge conservation for local electromagnetic field solvers, Comput. Phys. Commun., 69, 306-316 (1992)
[51] Eastwood, James W., The virtual particle electromagnetic particle-mesh method, Comput. Phys. Commun., 64, 252-266 (1991)
[52] Pukhov, A., Three-dimensional electromagnetic relativistic particle-in-cell code VLPL (virtual laser plasma lab), J. Plasma Phys., 61, 425-433 (1999)
[53] Pukhov, A.; Meyer-ter-Vehn, J., Laser wake field acceleration: the highly non-linear broken-wave regime, Appl. Phys. B, 74, 355 (2001)
[54] Cowan, Benjamin M.; Bruhwiler, David L.; Cormier-Michel, Estelle; Esarey, Eric; Geddes, Cameron G. R.; Messmer, Peter; Pau, Kevin M., Characteristics of an envelope model for laser-plasma accelerator simulation, J. Comput. Phys., 230, 61-86 (2011) · Zbl 1427.82041
[55] Hidding, B., Ultracold electron bunch generation via plasma photocathode emission and acceleration in a beam-driven plasma blowout, Phys. Rev. Lett., 108, Article 035001 pp. (2012)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.