×

Semilinear elliptic problems with combined nonlinearities on the boundary. (English) Zbl 1376.35013

Summary: We prove the existence of two solutions for some elliptic equations with combined indefinite nonlinearities on the boundary. The main novelty is to consider variational methods together with a suitable split of the Sobolev space \(W^{1,2}(\Omega )\).

MSC:

35J10 Schrödinger operator, Schrödinger equation
35J61 Semilinear elliptic equations
35J25 Boundary value problems for second-order elliptic equations
35J20 Variational methods for second-order elliptic equations
35B09 Positive solutions to PDEs
Full Text: DOI

References:

[1] Alama, S., del Pino, M.: Solutions of elliptic equations with indefinite non linearities via Morse theory and linking. Ann. Inst. Henri Poincare 13(1), 95-115 (1996) · Zbl 0851.35037 · doi:10.1016/S0294-1449(16)30098-1
[2] Alama, S., Tarantello, G.: On semilinear elliptic equations with indefinite nonlinearities. Calc. Var. Partial Differ. Equ. 1, 439-475 (1993) · Zbl 0809.35022 · doi:10.1007/BF01206962
[3] Ambrosetti, A., Brezis, H., Cerami, G.: Combined effects of concave and convex nonlinearities in some elliptic problems. J. Funct. Anal. 122(2), 519-543 (1994) · Zbl 0805.35028 · doi:10.1006/jfan.1994.1078
[4] Azorero, J.G., Peral, I., Rossi, J.D.: A convex-concave problem with a nonlinear boundary condition. J. Differ. Equ. 198(1), 91-128 (2004) · Zbl 1065.35122 · doi:10.1016/S0022-0396(03)00068-8
[5] Berchio, E., Gazzola, F., Pierotti, D.: Gelfand type elliptic problems under Steklov boundary conditions. Ann. Inst. Henri Poincare Anal. Non Lin. 27(1), 315-335 (2010) · Zbl 1184.35132 · doi:10.1016/j.anihpc.2009.09.011
[6] Berestycki, H., Capuzzo-Dolcetta, I., Nirenberg, L.: Variational methods for indefinite superlinear homogeneous elliptic problems. NoDEA Nonlinear Differ. Equ. Appl. 2(4), 553-572 (1995) · Zbl 0840.35035 · doi:10.1007/BF01210623
[7] Brezis, H.: Functional Analysis, Sobolev Spaces and Partial Differential Equations. Springer, New York (2011) · Zbl 1220.46002
[8] Calderon, A.P.: On an inverse boundary value problem. Mat. apl. comput 25(2-3), 133-138 (2006) · Zbl 1182.35230
[9] Cuesta, M., Quoirin, H.R.: A weighted eigenvalue problem for the p-Laplacian plus a potential. NoDEA Nonlinear Differ. Equ. Appl. 16, 469-491 (2009) · Zbl 1174.35089 · doi:10.1007/s00030-009-0026-9
[10] Chabrowski, J., Tintarev, C.: An elliptic problem with an indefinite nonlinearity and a parameter in the boundary condition. NoDEA Nonlinear Differ. Equ. Appl. 21(4), 519-540 (2014) · Zbl 1302.35148 · doi:10.1007/s00030-013-0256-8
[11] Escobar, J.F.: The geometry of the first non-zero Steklov eigenvalue. J. Funct. Anal. 150, 544-556 (1997) · Zbl 0888.58066 · doi:10.1006/jfan.1997.3116
[12] Escobar, J.F.: A comparison theorem for the first non-zero Steklov eingenvalue. J. Funct. Anal. 178, 143-155 (2000) · Zbl 0971.58017 · doi:10.1006/jfan.2000.3662
[13] da Silva, E.D., de Paiva, F.O.V.: Landesman-Lazer type conditions and multiplicity results for nonlinear elliptic problems with Neumann boundary values. Acta Math. Sin. (Engl. Ser.) 30(2), 229-250 (2014) · Zbl 1290.35124 · doi:10.1007/s10114-014-2750-2
[14] de Figueiredo, D.G., Gossez, J.P., Ubilla, P.: Local superlinearity and sublinearity for indefinite semilinear elliptic problems. J. Funct. Anal. 199(2), 452-467 (2003) · Zbl 1034.35042 · doi:10.1016/S0022-1236(02)00060-5
[15] Furtado, M.F., Ruviaro, R.: Multiple solutions for a semilinear problem with combined terms and nonlinear boundary conditions. Nonlinear Anal. 74(14), 4820-4830 (2011) · Zbl 1222.35087 · doi:10.1016/j.na.2011.04.054
[16] Furtado, M.F., Ruviaro, R., da Silva, J.P.P.: Two solutions for an elliptic equation with fast increasing weight and concave-convex nonlinearities. J. Math. Anal. Appl. 416(2), 698-709 (2014) · Zbl 1312.35099 · doi:10.1016/j.jmaa.2014.02.068
[17] Gilbarg, D., Trudinger, N.S.: Elliptic partial differential equations of second order. In: Classics in Mathematics, Springer, Berlin (2001). doi:10.1007/978-3-642-61798-0 · Zbl 1042.35002
[18] Leadi, L., Marcos, A.: A weighted eigencurve for Steklov problems with a potential. NoDEA Nonlinear Differ. Equ. Appl. 20(3), 687-713 (2013) · Zbl 1318.35056 · doi:10.1007/s00030-012-0175-0
[19] Li, S., Wu, S., Zhou, H.S.: Solutions to semilinear elliptic problems with combined nonlinearities. J. Differ. Equ. 185, 200-224 (2002) · Zbl 1032.35072 · doi:10.1006/jdeq.2001.4167
[20] Lions, J.L., Magenes, E.: Non-homogeneous boundary value problems and applications (Translated from the French by P. Kenneth). Die Grundlehren der mathematischen Wissenschaften, Band 182. Springer, New York (1972) · Zbl 0227.35001
[21] Mavinga, N., Nkashama, M.N.: Steklov-Neumann eigenproblems and nonlinear elliptic equations with nonlinear boundary conditions. J. Differ. Equ. 248(5), 1212-1229 (2010) · Zbl 1186.35082 · doi:10.1016/j.jde.2009.10.005
[22] Mavinga, N.: Generalized eigenproblem and nonlinear elliptic equations with nonlinear boundary conditions. Proc. R. Soc. Edinb. Sect. A 142(1), 137-153 (2012) · Zbl 1234.35109 · doi:10.1017/S0308210510000065
[23] Pagani, C.D., Pierotti, D.: Multiple variational solutions to nonlinear Steklov problems. NoDEA Nonlinear Differ. Equ. Appl. 19(4), 417-436 (2012) · Zbl 1255.35091 · doi:10.1007/s00030-011-0136-z
[24] Pagani, C.D., Pierotti, D.: Variational methods for nonlinear Steklov eigenvalue problems with an indefinite weight function. Calc. Var. Partial Differ. Equ. 39(1-2), 35-58 (2010) · Zbl 1198.35170 · doi:10.1007/s00526-009-0300-z
[25] Steklov, M.W.: Sur les problmes fondamentaux de la physique mathmatique. Ann. Sci. Ec. Norm. Super. 19, 455-490 (1902) · JFM 33.0800.01 · doi:10.24033/asens.516
[26] Torné, O.: Steklov problem with an indefinite weight for the p-lapacian. Electron. J. Differ. Equ. 87, 1-8 (2005) · Zbl 1245.35062
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.