×

A weighted eigenvalue problem for the \(p\)-Laplacian plus a potential. (English) Zbl 1174.35089

Summary: Let \(\Delta _{p }\) denote the p-Laplacian operator and \(\Omega \) be a bounded domain in \({\mathbb{R}^N}\). We consider the eigenvalue problem \[ -\Delta_p u +V(x) |u|^{p-2}u=\lambda m(x) |u|^{p-2} u, \, \quad u \in W_0^{1,p} (\Omega) \] for a potential \(V\) and a weight function \(m\) that may change sign and be unbounded. Therefore the functional to be minimized is indefinite and may be unbounded from below. The main feature here is the introduction of a value \(\alpha \)(V, m) that guarantees the boundedness of the energy over the weighted sphere \({M=\{u \in W_0^{1,p}(\Omega); \int_{\Omega}m|u|^p\, dx= 1\}}\). We show that the above equation has a principal eigenvalue if and only if either \(m \geq 0\) and \(\alpha (V, m) > 0\) or \(m\) changes sign and \(\alpha (V, m) \geq 0\). The existence of further eigenvalues is also treated here, mainly a second eigenvalue (to the right) and their dependence with respect to \(V\) and \(m\).

MSC:

35P30 Nonlinear eigenvalue problems and nonlinear spectral theory for PDEs
35J20 Variational methods for second-order elliptic equations
35J70 Degenerate elliptic equations
35P05 General topics in linear spectral theory for PDEs
35B30 Dependence of solutions to PDEs on initial and/or boundary data and/or on parameters of PDEs
Full Text: DOI

References:

[1] Allegretto W., Huang Y.-X.: A Picone’s identity for the p-Laplacian and applications. NonLinear Analy. TMA 32(7), 819-830 (1998) · Zbl 0930.35053 · doi:10.1016/S0362-546X(97)00530-0
[2] Anane, A.: Etude des valeurs propres et de la résonance pour l’opérateur p-laplacien. Thèse de Doctorat, Université Libre de Bruxelles (1987) · Zbl 1138.35074
[3] Anane, A., Tsouli, N.: On the second eigenvalue of the p-Laplacian. In: Benkirane, A., Gossez, J.-P. (eds.) Nonlinear PDE. Pitman Research Notes in Mathematics 343, 1-9 (1996) · Zbl 0854.35081
[4] Arias M., Campos J., Cuesta M., Gossez J.-P.: Asymmetric elliptic problems with indefinite weights. Ann. Inst. H. Poincaré An. Non Li. 19, 581-616 (2002) · Zbl 1016.35054 · doi:10.1016/S0294-1449(01)00093-2
[5] Arias M., Campos J., Cuesta M., Gossez J.-P.: An asymmetric Neumann problem with weights. Ann. Inst. H. Poincaré An. Non Li. 25(2), 267-280 (2008) · Zbl 1138.35074 · doi:10.1016/j.anihpc.2006.07.006
[6] Bucur, D., Buttazzo, G.: Variational methods in shape optimization problems. In: Progress in Nonlinear Differential Equations and their Applications, 65. Birkhäuser Boston, Inc., Boston (2005) · Zbl 1117.49001
[7] Binding P.A., Huang Y.X.: The principal eigencurve for the p-Laplacian. Differ. Integral Equ. 8(2), 405-414 (1995) · Zbl 0819.35107
[8] Binding P.A., Huang Y.X.: Existence and nonexistence of positive eigenfunctions for the p-Laplacian. Proc. Am. Math. Soc. 123(6), 1833-1838 (1995) · Zbl 0822.47054 · doi:10.2307/2160998
[9] Corvellec J.-N.: Quantitative deformation theorems and critical point theory. Pac. J. Math. 187(2), 263-279 (1999) · Zbl 0939.58016 · doi:10.2140/pjm.1999.187.263
[10] Corvellec J.-N., Degiovanni M., Marzocchi M.: Deformation properties for continuous functionals and critical point theory. Topol. Methods Nonlinear Anal. 1(1), 151-171 (1993) · Zbl 0789.58021
[11] Cuesta, M.: Eigenvalue problems for the p-Laplacian with indefinite weight. Elec. J. Differ. Equ. 1-9 (2001) · Zbl 0964.35110
[12] del Pezzo L.M., Fernandez Bonder J.: An optimization problem for the first eigenvalue of the p-Laplacian plus a potential. Commun. Partial Differ. Equ. 5(4), 675-690 (2006) · Zbl 1175.35092
[13] Fleckinger J., Hernandez J., Thélin F.: Existence of multiple principal eigenvalues for some indefinite linear eigenvalue problems. Bolletino U.M.I (8) 7-B, 159-188 (2004) · Zbl 1117.35054
[14] Garcia Azorero J.P., Peral Alonso I.: Existence and nonuniqueness for the p-Laplacian nonlinear eigenvalues. Commun. Partial Differ. Equ. 12(12), 1389-1400 (1987) · Zbl 0637.35069
[15] Godoy, T., Gossez, J.-P., Paczka, S.: A minimax formula for the principal eigenvalues of Dirichlet problems and its applications. 2006 International Conference in honor of Jacqueline Fleckinger. Elect. J. Differ. Equ. Conf. 16, 137-154 (2007) · Zbl 1153.35057
[16] Henrot, A., Pierre, M.: “Variation et optimisation de formes. Une analyse géométrique” Collection: Mathématiques et Applications, vol. 48. Springer, New York (2005) · Zbl 1098.49001
[17] Ladyzhenskaya, O., Uraltseva, N.: “Equations aux Dérivées Partielles du Type Elliptique du Second Ordre”, Ed. Masson (France) (1975) · Zbl 0662.35080
[18] Lions, J.-L.: “Équations différentielles opérationnelles et problèmes aux limites”, Die Grundlehren der mathematischen Wissenschaften, Bd. 111. Springer-Verlag, Berlin-Gttingen-Heidelberg (1961) · Zbl 0098.31101
[19] Lopez-Gomez J.: The maximum principle and the existence of principal eigenvalues for some linear weighted eigenvalue problems. J. Differ. Equ. 127, 263-294 (1996) · Zbl 0853.35078 · doi:10.1006/jdeq.1996.0070
[20] Otani M., Teshima T.: On the first eigenvalue of some quasilinear elliptic equations. Proc. Jpn. Acad. 64, 8-10 (1988) · Zbl 0662.35080 · doi:10.3792/pjaa.64.8
[21] Serrin J.: Local behavior of solutions of quasilinear equations. Acta Math. 111, 247-302 (1962) · Zbl 0128.09101 · doi:10.1007/BF02391014
[22] Ziemer, W.P.: Weakly Differentiable Functions. GTM 120, Springer-Verlarg (1989) · Zbl 0692.46022
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.