×

Ground state for the Schrödinger operator with the weighted Hardy potential. (English) Zbl 1234.35157

Summary: We establish the existence of ground states on \(\mathbb R^N\) for the Laplace operator involving the Hardy-type potential. This gives rise to the existence of the principal eigenfunctions for the Laplace operator involving weighted Hardy potentials. We also obtain a higher integrability property for the principal eigenfunction. This is used to examine the behaviour of the principal eigenfunction around 0.

MSC:

35P15 Estimates of eigenvalues in context of PDEs
35J10 Schrödinger operator, Schrödinger equation
35J05 Laplace operator, Helmholtz equation (reduced wave equation), Poisson equation

References:

[1] D. Gilbarg and N. S. Trudinger, Elliptic Partial Differential Equations of Second Order, vol. 224 of Grundlehren der Mathematischen Wissenschaften, Springer, Berlin, Germany, 2nd edition, 1983. · Zbl 0562.35001
[2] M. Murata, “Structure of positive solutions to ( - \Delta +V)u=0 in \Bbb RN,” Duke Mathematical Journal, vol. 53, no. 4, pp. 869-943, 1986. · Zbl 0692.35038 · doi:10.1215/S0012-7094-86-05347-0
[3] Y. Pinchover and K. Tintarev, “A ground state alternative for singular Schrödinger operators,” Journal of Functional Analysis, vol. 230, no. 1, pp. 65-77, 2006. · Zbl 1086.35025 · doi:10.1016/j.jfa.2005.05.015
[4] Y. Pinchover and K. Tintarev, “Ground state alternative for p-Laplacian with potential term,” Calculus of Variations and Partial Differential Equations, vol. 28, no. 2, pp. 179-201, 2007. · Zbl 1208.35032 · doi:10.1007/s00526-006-0040-2
[5] V. G. Maz’ja, Sobolev Spaces, Springer Series in Soviet Mathematics, Springer, Berlin, Germany, 1985.
[6] W. Allegretto, “Principal eigenvalues for indefinite-weight elliptic problems in \Bbb RN,” Proceedings of the American Mathematical Society, vol. 116, no. 3, pp. 701-706, 1992. · Zbl 0764.35031 · doi:10.2307/2159436
[7] K. J. Brown, C. Cosner, and J. Fleckinger, “Principal eigenvalues for problems with indefinite weight function on \Bbb RN,” Proceedings of the American Mathematical Society, vol. 109, no. 1, pp. 147-155, 1990. · Zbl 0726.35089 · doi:10.2307/2048374
[8] K. J. Brown and A. Tertikas, “The existence of principal eigenvalues for problems with indefinite weight function on IR,” Proceedings of the Royal Society of Edinburgh A, vol. 123, no. 3, pp. 561-569, 1993. · Zbl 0804.35095 · doi:10.1017/S0308210500025889
[9] Z. Jin, “Principal eigenvalues with indefinite weight functions,” Transactions of the American Mathematical Society, vol. 349, no. 5, pp. 1945-1959, 1997. · Zbl 0877.35083 · doi:10.1090/S0002-9947-97-01797-2
[10] L. Leadi and A. Yechoui, “Principal eigenvalue in an unbounded domain with indefinite potential,” Nonlinear Differential Equations and Applications, vol. 17, no. 4, pp. 391-409, 2010. · Zbl 1198.35168 · doi:10.1007/s00030-010-0059-0
[11] N. B. Rhouma, “Principal eigenvalues for indefinite weight problems in all of \Bbb RN,” Proceedings of the American Mathematical Society, vol. 131, no. 12, pp. 3747-3755, 2004. · Zbl 1054.35038 · doi:10.1090/S0002-9939-03-06967-3
[12] D. Smets, “A concentration-compactness lemma with applications to singular eigenvalue problems,” Journal of Functional Analysis, vol. 167, no. 2, pp. 463-480, 1999. · Zbl 0942.35127 · doi:10.1006/jfan.1999.3461
[13] A. Szulkin and M. Willem, “Eigenvalue problems with indefinite weight,” Studia Mathematica, vol. 135, no. 2, pp. 191-201, 1999. · Zbl 0931.35121
[14] T. V. Anoop, M. Lucia, and M. Ramaswamy, “Eigenvalue problems with weights in Lorentz spaces,” Calculus of Variations and Partial Differential Equations, vol. 36, no. 3, pp. 355-376, 2009. · Zbl 1188.35124 · doi:10.1007/s00526-009-0232-7
[15] N. Visciglia, “A note about the generalized Hardy-Sobolev inequality with potential in Lp,d(\Bbb RN),” Calculus of Variations and Partial Differential Equations, vol. 24, no. 2, pp. 167-184, 2005. · Zbl 1073.26011 · doi:10.1007/s00526-004-0319-0
[16] J. Bergh and J. Löfström, Interpolation Spaces: An Introduction, Grundlehren der Mathematischen Wissenschaften, no. 22, Springer, Berlin, Germany, 1976. · Zbl 0344.46071
[17] R. A. Hunt, “On L(p, q) spaces,” L’Enseignement Mathématique, vol. 12, no. 2, pp. 249-276, 1966. · Zbl 0181.40301
[18] G. G. Lorentz, “Some new functional spaces,” Annals of Mathematics, vol. 51, pp. 37-55, 1950. · Zbl 0035.35602 · doi:10.2307/1969496
[19] A. Tertikas, “Critical phenomena in linear elliptic problems,” Journal of Functional Analysis, vol. 154, no. 1, pp. 42-66, 1998. · Zbl 0920.35044 · doi:10.1006/jfan.1997.3199
[20] Y. Pinchover, A. Tertikas, and K. Tintarev, “A Liouville-type theorem for the p-Laplacian with potential term,” Annales de l’Institut Henri Poincaré C, vol. 25, no. 2, pp. 357-368, 2008. · Zbl 1151.35027 · doi:10.1016/j.anihpc.2006.12.004
[21] J. Chabrowski, “On the nonlinear Neumann problem involving the critical Sobolev exponent and Hardy potential,” Revista Matemática Complutense, vol. 17, no. 1, pp. 195-227, 2004. · Zbl 1152.35033 · doi:10.5209/rev_REMA.2004.v17.n1.16800
[22] J. Chen, “Exact local behavior of positive solutions for a semilinear elliptic equation with Hardy term,” Proceedings of the American Mathematical Society, vol. 132, no. 11, pp. 3225-3229, 2004. · Zbl 1096.35042 · doi:10.1090/S0002-9939-04-07567-7
[23] P. Han, “Asymptotic behavior of solutions to semilinear elliptic equations with Hardy potential,” Proceedings of the American Mathematical Society, vol. 135, no. 2, pp. 365-372, 2007. · Zbl 1173.35061 · doi:10.1090/S0002-9939-06-08462-0
[24] L. Caffarelli, R. Kohn, and L. Nirenberg, “First order interpolation inequalities with weights,” Compositio Mathematica, vol. 53, no. 3, pp. 259-275, 1984. · Zbl 0563.46024
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.