×

Old and new challenges in Hadamard spaces. (English) Zbl 1536.46061

Summary: Hadamard spaces have traditionally played important roles in geometry and geometric group theory. More recently, they have additionally turned out to be a suitable framework for convex analysis, optimization and non-linear probability theory. The attractiveness of these emerging subject fields stems, inter alia, from the fact that some of the new results have already found their applications both in mathematics and outside. Most remarkably, a gradient flow theorem in Hadamard spaces was used to attack a conjecture of Donaldson in Kähler geometry. Other areas of applications include metric geometry and minimization of submodular functions on modular lattices. There have been also applications into computational phylogenetics and image processing.
We survey recent developments in Hadamard space analysis and optimization with the intention to advertise various open problems in the area. We also point out several fallacies in the existing proofs.

MSC:

46N10 Applications of functional analysis in optimization, convex analysis, mathematical programming, economics
49J53 Set-valued and variational analysis
47H20 Semigroups of nonlinear operators
49M27 Decomposition methods
49-02 Research exposition (monographs, survey articles) pertaining to calculus of variations and optimal control

References:

[1] Aleksandrov, AD, A theorem on triangles in a metric space and some of its applications, Trudy Mat. Inst. Steklov., 38, 5-23 (1951) · Zbl 0049.39501
[2] S. Alexander, V. Kapovitch and A. Petrunin, An Invitation to Alexandrov Geometry: CAT(0) Spaces, SpringerBriefs Math., Springer-Verlag, 2019. · Zbl 1433.53065
[3] Ambrosio, L.; Gigli, N.; Savaré, G., Gradient flows in metric spaces and in the space of probability measures (2008), Basel: Birkhäuser Verlag, Basel · Zbl 1145.35001
[4] Ambrosio, L.; Kirchheim, B., Currents in metric spaces, Acta Math., 185, 1-80 (2000) · Zbl 0984.49025 · doi:10.1007/BF02392711
[5] Andoni, A.; Naor, A.; Neiman, O., Snowflake universality of Wasserstein spaces, Ann. Sci. Éc. Norm. Supér. (4), 51, 657-700 (2018) · Zbl 1403.46020 · doi:10.24033/asens.2363
[6] Ardila, F.; Baker, T.; Yatchak, R., Moving robots efficiently using the combinatorics of CAT(0) cubical complexes, SIAM J. Discrete Math., 28, 986-1007 (2014) · Zbl 1339.68251 · doi:10.1137/120898115
[7] Ardila, F.; Bastidas, H.; Ceballos, C.; Guo, J., The configuration space of a robotic arm in a tunnel, SIAM J. Discrete Math., 31, 2675-2702 (2017) · Zbl 1377.68257 · doi:10.1137/16M1089411
[8] Ardila, F.; Owen, M.; Sullivant, S., Geodesics in CAT(0) cubical complexes, Adv. in Appl. Math., 48, 142-163 (2012) · Zbl 1275.05055 · doi:10.1016/j.aam.2011.06.004
[9] Ariza-Ruiz, D.; López-Acedo, G.; Nicolae, A., The asymptotic behavior of the composition of firmly nonexpansive mappings, J. Optim. Theory Appl., 167, 409-429 (2015) · Zbl 1329.47052 · doi:10.1007/s10957-015-0710-3
[10] Artstein, Z.; Wets, RJ-B, Consistency of minimizers and the SLLN for stochastic programs, J. Convex Anal., 2, 1-17 (1995) · Zbl 0837.90093
[11] Attouch, H., Variational Convergence for Functions and Operators (1984), Boston, MA: Pitman, Advanced Publ. Program, Boston, MA · Zbl 0561.49012
[12] Austin, T., A CAT(0)-valued pointwise ergodic theorem, J. Topol. Anal., 3, 145-152 (2011) · Zbl 1221.37006 · doi:10.1142/S1793525311000544
[13] Austin, T., Erratum: A CAT(0)-valued pointwise ergodic theorem, J. Topol. Anal., 8, 373-374 (2016) · Zbl 1417.37052 · doi:10.1142/S1793525316920011
[14] Bačák, M., The proximal point algorithm in metric spaces, Israel J. Math., 194, 689-701 (2013) · Zbl 1278.49039 · doi:10.1007/s11856-012-0091-3
[15] Bačák, M., Computing medians and means in Hadamard spaces, SIAM J. Optim., 24, 1542-1566 (2014) · Zbl 1306.49046 · doi:10.1137/140953393
[16] Bačák, M., Convex Analysis and Optimization in Hadamard Spaces (2014), Berlin: De Gruyter, Berlin · Zbl 1299.90001 · doi:10.1515/9783110361629
[17] Bačák, M., A new proof of the Lie-Trotter-Kato formula in Hadamard spaces, Commun. Contemp. Math., 16, 6, 1350044 (2014) · Zbl 1320.47054 · doi:10.1142/S0219199713500442
[18] Bačák, M., Convergence of nonlinear semigroups under nonpositive curvature, Trans. Amer. Math. Soc., 367, 3929-3953 (2015) · Zbl 1310.58004 · doi:10.1090/S0002-9947-2015-06087-5
[19] Bačák, M., A variational approach to stochastic minimization of convex functionals, Pure Appl. Funct. Anal., 3, 287-295 (2018) · Zbl 1474.90326
[20] Bačák, M.; Bergmann, R.; Steidl, G.; Weinmann, A., A second order non-smooth variational model for restoring manifold-valued images, SIAM J. Sci. Comput., 38, A567-A597 (2016) · Zbl 1382.94007 · doi:10.1137/15M101988X
[21] Bačák, M.; Kovalev, LV, Lipschitz retractions in Hadamard spaces via gradient flow semigroups, Canad. Math. Bull., 59, 673-681 (2016) · Zbl 1357.53045 · doi:10.4153/CMB-2016-033-3
[22] Bačák, M.; Montag, M.; Steidl, G., Convergence of functions and their Moreau envelopes on Hadamard spaces, J. Approx. Theory, 224, 1-12 (2017) · Zbl 1377.93038 · doi:10.1016/j.jat.2017.08.006
[23] Bačák, M.; Reich, S., The asymptotic behavior of a class of nonlinear semigroups in Hadamard spaces, J. Fixed Point Theory Appl., 16, 189-202 (2014) · Zbl 1339.47074 · doi:10.1007/s11784-014-0202-3
[24] Bačák, M.; Searston, I.; Sims, B., Alternating projections in CAT(0) spaces, J. Math. Anal. Appl., 385, 599-607 (2012) · Zbl 1232.47047 · doi:10.1016/j.jmaa.2011.06.079
[25] Baillon, J-B, Un exemple concernant le comportement asymptotique de la solution du problème \(du/dt+∂φ (u)\) ∋ 0, J. Functional Analysis, 28, 369-376 (1978) · Zbl 0386.47041 · doi:10.1016/0022-1236(78)90093-9
[26] Banert, S., Backward-backward splitting in Hadamard spaces, J. Math. Anal. Appl., 414, 656-665 (2014) · Zbl 1307.47076 · doi:10.1016/j.jmaa.2014.01.054
[27] Barden, D.; Le, H., The logarithm map, its limits and Fréchet means in orthant spaces, Proc. Lond. Math. Soc. (3), 117, 751-789 (2018) · Zbl 1434.60007 · doi:10.1112/plms.12149
[28] D. Barden, H. Le and M. Owen, Central limit theorems for Fréchet means in the space of phylogenetic trees, Electron. J. Probab., 18 (2013), no. 25. · Zbl 1284.60023
[29] Barden, D.; Le, H.; Owen, M., Limiting behaviour of Fréchet means in the space of phylogenetic trees, Ann. Inst. Statist. Math., 70, 99-129 (2018) · Zbl 1394.62153 · doi:10.1007/s10463-016-0582-9
[30] Bauschke, HH, The composition of projections onto closed convex sets in Hilbert space is asymptotically regular, Proc. Amer. Math. Soc., 131, 141-146 (2003) · Zbl 1016.47038 · doi:10.1090/S0002-9939-02-06528-0
[31] Bauschke, HH; Burke, JV; Deutsch, FR; Hundal, HS; Vanderwerff, JD, A new proximal point iteration that converges weakly but not in norm, Proc. Amer. Math. Soc., 133, 1829-1835 (2005) · Zbl 1071.65082 · doi:10.1090/S0002-9939-05-07719-1
[32] H.H. Bauschke and P.L. Combettes, Convex analysis and monotone operator theory in Hilbert spaces. Second ed., With a foreword by Hédy Attouch, CMS Books Math./Ouvrages Math. SMC, Springer-Verlag, 2017. · Zbl 1359.26003
[33] Bauschke, HH; Matoušková, E.; Reich, S., Projection and proximal point methods: convergence results and counterexamples, Nonlinear Anal., 56, 715-738 (2004) · Zbl 1059.47060 · doi:10.1016/j.na.2003.10.010
[34] Benner, P.; Bačák, M.; Bourguignon, P-Y, Point estimates in phylogenetic reconstructions, Bioinformatics, 30, i534-i540 (2014) · doi:10.1093/bioinformatics/btu461
[35] Bërdëllima, A., A note on Mosco convergence in CAT(0) spaces, Canad. Math. Bull., 65, 994-1003 (2022) · Zbl 1522.46048 · doi:10.4153/S000843952200008X
[36] Berg, ID; Nikolaev, IG, Quasilinearization and curvature of Aleksandrov spaces, Geom. Dedicata, 133, 195-218 (2008) · Zbl 1144.53045 · doi:10.1007/s10711-008-9243-3
[37] Bergmann, R.; Chan, RH; Hielscher, R.; Persch, J.; Steidl, G., Restoration of manifold-valued images by half-quadratic minimization, Inverse Probl. Imaging, 10, 281-304 (2016) · Zbl 1348.65097 · doi:10.3934/ipi.2016001
[38] Bergmann, R.; Laus, F.; Steidl, G.; Weinmann, A., Second order differences of cyclic data and applications in variational denoising, SIAM J. Imaging Sci., 7, 2916-2953 (2014) · Zbl 1309.65022 · doi:10.1137/140969993
[39] Bergmann, R.; Persch, J.; Steidl, G., A parallel Douglas-Rachford algorithm for minimizing ROF-like functionals on images with values in symmetric Hadamard manifolds, SIAM J. Imaging Sci., 9, 901-937 (2016) · Zbl 1346.65006 · doi:10.1137/15M1052858
[40] R. Bergmann and A. Weinmann, Inpainting of cyclic data using first and second order differences, preprint, arXiv:1410.1998v1; Accepted converence paper at EMMCVPR’15.
[41] Bergmann, R.; Weinmann, A., A second-order TV-type approach for inpainting and denoising higher dimensional combined cyclic and vector space data, J. Math. Imaging Vision, 55, 401-427 (2016) · Zbl 1338.65155 · doi:10.1007/s10851-015-0627-3
[42] Berman, RJ; Darvas, T.; Lu, CH, Convexity of the extended K-energy and the large time behavior of the weak Calabi flow, Geom. Topol., 21, 2945-2988 (2017) · Zbl 1372.53073 · doi:10.2140/gt.2017.21.2945
[43] Bertsekas, DP, Incremental proximal methods for large scale convex optimization, Math. Program., 129, 163-195 (2011) · Zbl 1229.90121 · doi:10.1007/s10107-011-0472-0
[44] Billera, LJ; Holmes, SP; Vogtmann, K., Geometry of the space of phylogenetic trees, Adv. in Appl. Math., 27, 733-767 (2001) · Zbl 0995.92035 · doi:10.1006/aama.2001.0759
[45] Borsuk, K.; Ulam, S., On symmetric products of topological spaces, Bull. Amer. Math. Soc., 37, 875-882 (1931) · Zbl 0003.22402 · doi:10.1090/S0002-9904-1931-05290-3
[46] Bourgain, J., On Lipschitz embedding of finite metric spaces in Hilbert space, Israel J. Math., 52, 46-52 (1985) · Zbl 0657.46013 · doi:10.1007/BF02776078
[47] Bourgain, J., The metrical interpretation of superreflexivity in Banach spaces, Israel J. Math., 56, 222-230 (1986) · Zbl 0643.46013 · doi:10.1007/BF02766125
[48] Bourgain, J.; Milman, V.; Wolfson, H., On type of metric spaces, Trans. Amer. Math. Soc., 294, 295-317 (1986) · Zbl 0617.46024 · doi:10.1090/S0002-9947-1986-0819949-8
[49] Brady, T.; McCammond, J., Braids, posets and orthoschemes, Algebr. Geom. Topol., 10, 2277-2314 (2010) · Zbl 1205.05246 · doi:10.2140/agt.2010.10.2277
[50] Bredies, K.; Holler, M.; Storath, M.; Weinmann, A., Total generalized variation for manifold-valued data, SIAM J. Imaging Sci., 11, 1785-1848 (2018) · Zbl 1401.94010 · doi:10.1137/17M1147597
[51] Brègman, LM, Finding the common point of convex sets by the method of successive projection, Dokl. Akad. Nauk SSSR, 162, 487-490 (1965) · Zbl 0142.16804
[52] Brézis, H., Opérateurs Maximaux Monotones Et Semi-Groupes De Contractions Dans Les Espaces De Hilbert (1973), Amsterdam: North-Holland Publ. Co., Amsterdam · Zbl 0252.47055
[53] Brézis, H.; Lions, P-L, Produits infinis de résolvantes, Israel J. Math., 29, 329-345 (1978) · Zbl 0387.47038 · doi:10.1007/BF02761171
[54] Brézis, H.; Pazy, A., Semigroups of nonlinear contractions on convex sets, J. Functional Analysis, 6, 237-281 (1970) · Zbl 0209.45503 · doi:10.1016/0022-1236(70)90060-1
[55] Brézis, H.; Pazy, A., Convergence and approximation of semigroups of nonlinear operators in Banach spaces, J. Functional Analysis, 9, 63-74 (1972) · Zbl 0231.47036 · doi:10.1016/0022-1236(72)90014-6
[56] M.R. Bridson and A. Haefliger, Metric Spaces of Non-Positive Curvature, Grundlehren Math. Wiss., 319, Springer-Verlag, 1999. · Zbl 0988.53001
[57] Browder, FE; Petryshyn, WV, The solution by iteration of nonlinear functional equations in Banach spaces, Bull. Amer. Math. Soc., 72, 571-575 (1966) · Zbl 0138.08202 · doi:10.1090/S0002-9904-1966-11544-6
[58] Brown, DG; Owen, M., Mean and variance of phylogenetic trees, Systematic Biology, 69, 139-154 (2019) · doi:10.1093/sysbio/syz041
[59] Bruck, RE Jr., Asymptotic convergence of nonlinear contraction semigroups in Hilbert space, J. Functional Analysis, 18, 15-26 (1975) · Zbl 0319.47041 · doi:10.1016/0022-1236(75)90027-0
[60] Busemann, H., Spaces with non-positive curvature, Acta Math., 80, 259-310 (1948) · Zbl 0038.10005 · doi:10.1007/BF02393651
[61] Chalopin, J.; Chepoi, V.; Hirai, H.; Osajda, D., Weakly Modular Graphs and Nonpositive Curvature (2020), Providence, RI: Amer. Math. Soc., Providence, RI · Zbl 1475.05001
[62] Chalopin, J.; Chepoi, V.; Naves, G., Isometric embedding of Busemann surfaces into Li, Discrete Comput. Geom., 53, 16-37 (2015) · Zbl 1314.30120 · doi:10.1007/s00454-014-9643-0
[63] Chepoi, V.; Estellon, B.; Naves, G., Packing and covering with balls on Busemann surfaces, Discrete Comput. Geom., 57, 985-1011 (2017) · Zbl 1372.52021 · doi:10.1007/s00454-017-9872-0
[64] Chepoi, V.; Maftuleac, D., Shortest path problem in rectangular complexes of global nonpositive curvature, Comput. Geom., 46, 51-64 (2013) · Zbl 1259.65099 · doi:10.1016/j.comgeo.2012.04.002
[65] Chernoff, PR, Note on product formulas for operator semigroups, J. Functional Analysis, 2, 238-242 (1968) · Zbl 0157.21501 · doi:10.1016/0022-1236(68)90020-7
[66] Clément, P.; Maas, J., A Trotter product formula for gradient flows in metric spaces, J. Evol. Equ., 11, 405-427 (2011) · Zbl 1232.49051 · doi:10.1007/s00028-010-0096-5
[67] Combettes, PL; Glaudin, LE, Proximal activation of smooth functions in splitting algorithms for convex image recovery, SIAM J. Imaging Sci., 12, 1905-1935 (2019) · Zbl 1443.90269 · doi:10.1137/18M1224763
[68] Crandall, MG; Liggett, TM, Generation of semi-groups of nonlinear transformations on general Banach spaces, Amer. J. Math., 93, 265-298 (1971) · Zbl 0226.47038 · doi:10.2307/2373376
[69] Dal Maso, G., An Introduction to Γ-Convergence (1993), Boston, MA: Birkhäuser Boston Inc., Boston, MA · Zbl 0816.49001 · doi:10.1007/978-1-4612-0327-8
[70] Daniilidis, A.; David, G.; Durand-Cartagena, E.; Lemenant, A., Rectifiability of self-contracted curves in the Euclidean space and applications, J. Geom. Anal., 25, 1211-1239 (2015) · Zbl 1326.53009 · doi:10.1007/s12220-013-9464-z
[71] Daniilidis, A.; Ley, O.; Sabourau, S., Asymptotic behaviour of self-contracted planar curves and gradient orbits of convex functions, J. Math. Pures Appl. (9), 94, 183-199 (2010) · Zbl 1201.37023 · doi:10.1016/j.matpur.2010.03.007
[72] Donaldson, SK, Conjectures in Kähler geometry, Strings and Geometry, 71-78 (2004), Providence, RI: Amer. Math. Soc., Providence, RI · Zbl 1161.32010
[73] D. Drusvyatskiy, The proximal point method revisited, preprint, arXiv:1712.06038.
[74] Duchesne, B., Groups acting on spaces of non-positive curvature, Handbook of Group Actions. Vol. III, 101-141 (2018), Somerville, MA: Int. Press, Somerville, MA · Zbl 1504.20042
[75] Edelstein, M., The construction of an asymptotic center with a fixed-point property, Bull. Amer. Math. Soc., 78, 206-208 (1972) · Zbl 0231.47029 · doi:10.1090/S0002-9904-1972-12918-5
[76] Enflo, P., On the nonexistence of uniform homeomorphisms between \(L_p\)-spaces, Ark. Mat., 8, 103-105 (1969) · Zbl 0196.14002 · doi:10.1007/BF02589549
[77] Enflo, P., On infinite-dimensional topological groups, Séminaire sur la Géométrie des Espaces de Banach (1977-1978) (1978), Palaiseau: École Polytech., Palaiseau · Zbl 0395.22001
[78] Eskenazis, A.; Mendel, M.; Naor, A., Nonpositive curvature is not coarsely universal, Invent. Math., 217, 833-886 (2019) · Zbl 1432.51014 · doi:10.1007/s00222-019-00878-1
[79] Espínola, R.; Fernández-León, A., CAT \((k)\)-spaces, weak convergence and fixed points, J. Math. Anal. Appl., 353, 410-427 (2009) · Zbl 1182.47043 · doi:10.1016/j.jmaa.2008.12.015
[80] Espínola, R.; Nicolae, A., Proximal minimization in CAT \((κ)\) spaces, J. Nonlinear Convex Anal., 17, 2329-2338 (2016) · Zbl 1358.90096
[81] M. Fabian, P. Habala, P. Hájek, V. Montesinos and V. Zizler, Banach Space Theory. The Basis for Linear and Nonlinear Analysis, CMS Books Math./Ouvrages Math. SMC, Springer-Verlag, 2011. · Zbl 1229.46001
[82] Ferreira, OP; Oliveira, PR, Proximal point algorithm on Riemannian manifolds, Optimization, 51, 257-270 (2002) · Zbl 1013.49024 · doi:10.1080/02331930290019413
[83] Foertsch, T.; Lytchak, A.; Schroeder, V., Nonpositive curvature and the Ptolemy inequality, Int. Math. Res. Not. IMRN, 2007, rn-100 (2007) · Zbl 1135.53055
[84] Fuglede, B., Harmonic maps from Riemannian polyhedra to geodesic spaces with curvature bounded from above, Calc. Var. Partial Differential Equations, 31, 99-136 (2008) · Zbl 1133.58004 · doi:10.1007/s00526-007-0107-8
[85] Fuglede, B., Homotopy problems for harmonic maps to spaces of nonpositive curvature, Comm. Anal. Geom., 16, 681-733 (2008) · Zbl 1196.58006 · doi:10.4310/CAG.2008.v16.n4.a1
[86] Fujishige, S., Submodular Functions and Optimization (2005), Amsterdam: Elsevier B.V., Amsterdam · Zbl 1119.90044
[87] Gavryushkin, A.; Drummond, AJ, The space of ultrametric phylogenetic trees, J. Theoret. Biol., 403, 197-208 (2016) · Zbl 1343.92343 · doi:10.1016/j.jtbi.2016.05.001
[88] Gelander, T.; Karlsson, A.; Margulis, GA, Superrigidity, generalized harmonic maps and uniformly convex spaces, Geom. Funct. Anal., 17, 1524-1550 (2008) · Zbl 1156.22005 · doi:10.1007/s00039-007-0639-2
[89] Goebel, K.; Kirk, WA, Topics in Metric Fixed Point Theory (1990), Cambridge: Cambridge Univ. Press, Cambridge · Zbl 0708.47031 · doi:10.1017/CBO9780511526152
[90] Goebel, K.; Reich, S., Uniform convexity, hyperbolic geometry, and nonexpansive mappings (1984), New York: Marcel Dekker Inc., New York · Zbl 0537.46001
[91] Gromov, M., Asymptotic invariants of infinite groups, Geometric Group Theory. Vol. 2, 1-295 (1993), Cambridge: Cambridge Univ. Press, Cambridge
[92] Gromov, M., Metric Structures for Riemannian and Non-Riemannian Spaces (1999), Boston, MA: Birkhäuser Boston Inc., Boston, MA · Zbl 0953.53002
[93] Gromov, M., CAT \((κ)\)-spaces: construction and concentration, Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI), 280, 101-140 (2001)
[94] Gromov, M., Random walk in random groups, Geom. Funct. Anal., 13, 73-146 (2003) · Zbl 1122.20021 · doi:10.1007/s000390300002
[95] Gromov, M.; Schoen, R., Harmonic maps into singular spaces and \(p\)-adic superrigidity for lattices in groups of rank one, Inst. Hautes Études Sci. Publ. Math., 76, 165-246 (1992) · Zbl 0896.58024 · doi:10.1007/BF02699433
[96] Güler, O., On the convergence of the proximal point algorithm for convex minimization, SIAM J. Control Optim., 29, 403-419 (1991) · Zbl 0737.90047 · doi:10.1137/0329022
[97] Gursky, MJ; Streets, J., A formal Riemannian structure on conformal classes and the inverse Gauss curvature flow, Geom. Flows, 4, 30-50 (2019) · Zbl 1439.58008 · doi:10.1515/geofl-2019-0003
[98] Haettel, T.; Kielak, D.; Schwer, P., The 6-strand braid group is CAT(0), Geom. Dedicata, 182, 263-286 (2016) · Zbl 1347.20044 · doi:10.1007/s10711-015-0138-9
[99] M. Hamada and H. Hirai, Maximum vanishing subspace problem, CAT(0)-space relaxation, and block-triangularization of partitioned matrix, preprint, arXiv:1705.02060.
[100] Hamada, M.; Hirai, H., Computing the nc-rank via discrete convex optimization on CAT(0) spaces, SIAM J. Appl. Algebra Geom., 5, 455-478 (2021) · Zbl 1528.68422 · doi:10.1137/20M138836X
[101] Hayashi, K., A polynomial time algorithm to compute geodesics in CAT(0) cubical complexes, 45th International Colloquium on Automata, Languages, and Programming, LIPIcs (2018), Wadern: Schloss Dagstuhl. Leibniz-Zent. Inform., Wadern · Zbl 1474.68423
[102] Hirai, H., L-convexity on graph structures, J. Oper. Res. Soc. Japan, 61, 71-109 (2018) · Zbl 1391.90475
[103] Hirai, H., A nonpositive curvature property of modular semilattices, Geom. Dedicata, 214, 427-463 (2021) · Zbl 1542.06019 · doi:10.1007/s10711-021-00623-0
[104] Hundal, HS, An alternating projection that does not converge in norm, Nonlinear Anal., 57, 35-61 (2004) · Zbl 1070.46013 · doi:10.1016/j.na.2003.11.004
[105] Ivanisvili, P.; van Handel, R.; Volberg, A., Rademacher type and Enflo type coincide, Ann. of Math. (2), 192, 665-678 (2020) · Zbl 1458.46012 · doi:10.4007/annals.2020.192.2.8
[106] Ivanov, S.; Lytchak, A., Rigidity of Busemann convex Finsler metrics, Comment. Math. Helv., 94, 855-868 (2019) · Zbl 1481.53096 · doi:10.4171/CMH/476
[107] Izeki, H.; Kondo, T.; Nayatani, S., \(N\)-step energy of maps and the fixed-point property of random groups, Groups Geom. Dyn., 6, 701-736 (2012) · Zbl 1337.20042 · doi:10.4171/GGD/171
[108] Izeki, H.; Nayatani, S., Combinatorial harmonic maps and discrete-group actions on Hadamard spaces, Geom. Dedicata, 114, 147-188 (2005) · Zbl 1108.58014 · doi:10.1007/s10711-004-1843-y
[109] Jost, J., Equilibrium maps between metric spaces, Calc. Var. Partial Differential Equations, 2, 173-204 (1994) · Zbl 0798.58021 · doi:10.1007/BF01191341
[110] Jost, J., Convex functionals and generalized harmonic maps into spaces of non-positive curvature, Comment. Math. Helv., 70, 659-673 (1995) · Zbl 0852.58022 · doi:10.1007/BF02566027
[111] Jost, J., Generalized Dirichlet forms and harmonic maps, Calc. Var. Partial Differential Equations, 5, 1-19 (1997) · Zbl 0868.31009 · doi:10.1007/s005260050056
[112] Jost, J., Nonpositive Curvature: Geometric and Analytic Aspects (1997), Basel: Birkhäuser Verlag, Basel · Zbl 0896.53002 · doi:10.1007/978-3-0348-8918-6
[113] Jost, J., Nonlinear Dirichlet forms, New Directions in Dirichlet Forms, 1-47 (1998), Providence, RI: Amer. Math. Soc., Providence, RI · Zbl 0914.31006 · doi:10.1090/amsip/008/01
[114] Kakutani, S., Some characterizations of Euclidean space, Jpn. J. Math., 16, 93-97 (1939) · Zbl 0022.15001 · doi:10.4099/jjm1924.16.0_93
[115] Kato, T., Nonlinear semigroups and evolution equations, J. Math. Soc. Japan, 19, 508-520 (1967) · Zbl 0163.38303 · doi:10.2969/jmsj/01940508
[116] Kato, T.; Masuda, K., Trotter’s product formula for nonlinear semigroups generated by the subdifferentials of convex functionals, J. Math. Soc. Japan, 30, 169-178 (1978) · Zbl 0364.47031 · doi:10.2969/jmsj/03010169
[117] Kell, M., Symmetric orthogonality and non-expansive projections in metric spaces, Manuscripta Math., 161, 141-159 (2020) · Zbl 1432.53101 · doi:10.1007/s00229-018-1071-7
[118] Kimura, Y.; Kohsaka, F., Spherical nonspreadingness of resolvents of convex functions in geodesic spaces, J. Fixed Point Theory Appl., 18, 93-115 (2016) · Zbl 1334.54065 · doi:10.1007/s11784-015-0267-7
[119] Kimura, Y.; Kohsaka, F., Two modified proximal point algorithms for convex functions in Hadamard spaces, Linear Nonlinear Anal., 2, 69-86 (2016) · Zbl 1354.90167
[120] Kimura, Y.; Kohsaka, F., The proximal point algorithm in geodesic spaces with curvature bounded above, Linear Nonlinear Anal., 3, 133-148 (2017) · Zbl 1466.47052
[121] Kimura, Y.; Kohsaka, F., Two modified proximal point algorithms in geodesic spaces with curvature bounded above, Rend. Circ. Mat. Palermo (2), 68, 83-104 (2019) · Zbl 1423.53052 · doi:10.1007/s12215-018-0340-3
[122] Kirk, WA; Panyanak, B., A concept of convergence in geodesic spaces, Nonlinear Anal., 68, 3689-3696 (2008) · Zbl 1145.54041 · doi:10.1016/j.na.2007.04.011
[123] Kloeckner, BR, Yet another short proof of Bourgain’s distortion estimate for embedding of trees into uniformly convex Banach spaces, Israel J. Math., 200, 419-422 (2014) · Zbl 1314.46028 · doi:10.1007/s11856-014-0024-4
[124] Kobayashi, Y., Difference approximation of Cauchy problems for quasi-dissipative operators and generation of nonlinear semigroups, J. Math. Soc. Japan, 27, 640-665 (1975) · Zbl 0313.34068 · doi:10.2969/jmsj/02740640
[125] U. Kohlenbach, Applied Proof Theory: Proof Interpretations and their Use in Mathematics, Springer Monogr. Math., Springer-Verlag, 2008. · Zbl 1158.03002
[126] Kohlenbach, U., Recent progress in proof mining in nonlinear analysis, IFCoLog J. Log. Appl., 4, 3357-3406 (2017)
[127] Kohlenbach, U., A polynomial rate of asymptotic regularity for compositions of projections in Hilbert space, Found. Comput. Math., 19, 83-99 (2019) · Zbl 07027311 · doi:10.1007/s10208-018-9377-0
[128] Kohlenbach, U.; Leuştean, L., Effective metastability of Halpern iterates in CAT(0) spaces, Adv. Math., 231, 2526-2556 (2012) · Zbl 1270.47060 · doi:10.1016/j.aim.2012.06.028
[129] Kohlenbach, U.; Leuştean, L., Addendum to “Effective metastability of Halpern iterates in CAT(0) spaces”, Adv. Math., 250, 650-651 (2014) · Zbl 1284.47044 · doi:10.1016/j.aim.2013.07.023
[130] Kohlenbach, U.; Leuştean, L.; Nicolae, A., Quantitative results on Fejér monotone sequences, Commun. Contemp. Math., 20, 1750015 (2018) · Zbl 06814506 · doi:10.1142/S0219199717500158
[131] Kohsaka, F., Existence and approximation of fixed points of vicinal mappings in geodesic spaces, Pure Appl. Funct. Anal., 3, 91-106 (2018) · Zbl 1477.54101
[132] Kondo, T., CAT(0) spaces and expanders, Math. Z., 271, 343-355 (2012) · Zbl 1284.20043 · doi:10.1007/s00209-011-0866-y
[133] Kopecká, E.; Reich, S., Nonexpansive retracts in Banach spaces, Fixed Point Theory and Its Applications, 161-174 (2007), Warsaw: Polish Acad. Sci. Inst. Math., Warsaw · Zbl 1125.46019 · doi:10.4064/bc77-0-12
[134] Korevaar, NJ; Schoen, RM, Sobolev spaces and harmonic maps for metric space targets, Comm. Anal. Geom., 1, 561-659 (1993) · Zbl 0862.58004 · doi:10.4310/CAG.1993.v1.n4.a4
[135] Korevaar, NJ; Schoen, RM, Global existence theorems for harmonic maps to non-locally compact spaces, Comm. Anal. Geom., 5, 333-387 (1997) · Zbl 0908.58007 · doi:10.4310/CAG.1997.v5.n2.a4
[136] Kovalev, LV, Lipschitz retraction of finite subsets of Hilbert spaces, Bull. Aust. Math. Soc., 93, 146-151 (2016) · Zbl 1356.54034 · doi:10.1017/S0004972715000672
[137] Kristály, A.; Kozma, L., Metric characterization of Berwald spaces of nonpositive flag curvature, J. Geom. Phys., 56, 1257-1270 (2006) · Zbl 1103.53046 · doi:10.1016/j.geomphys.2005.06.014
[138] A. Kristály and A.Róth, Testing metric relations on Finsler manifolds via a geodesic detecting algorithm, In: 2014 IEEE 9th IEEE International Symposium on Applied Computaional Intelligence and Informatics, 2014, pp. 331-336.
[139] Kristály, A.; Varga, C.; Kozma, L., The dispersing of geodesics in Berwald spaces of non-positive flag curvature, Houston J. Math., 30, 413-420 (2004) · Zbl 1075.53077
[140] H.J. Kushner and G.G. Yin, Stochastic Approximation and Recursive Algorithms and Applications. Second ed., Appl. Math. (N. Y.), 35, Stoch. Model. Appl. Probab., Springer-Verlag, 2003. · Zbl 1026.62084
[141] Kuwae, K.; Shioya, T., Variational convergence over metric spaces, Trans. Amer. Math. Soc., 360, 35-75 (2008) · Zbl 1127.53034 · doi:10.1090/S0002-9947-07-04167-0
[142] Lafont, J-F; Prassidis, S., Roundness properties of groups, Geom. Dedicata, 117, 137-160 (2006) · Zbl 1114.20023 · doi:10.1007/s10711-005-9019-y
[143] Lang, U.; Pavlović, B.; Schroeder, V., Extensions of Lipschitz maps into Hadamard spaces, Geom. Funct. Anal., 10, 1527-1553 (2000) · Zbl 0990.53070 · doi:10.1007/PL00001660
[144] Lang, U.; Schroeder, V., Kirszbraun’s theorem and metric spaces of bounded curvature, Geom. Funct. Anal., 7, 535-560 (1997) · Zbl 0891.53046 · doi:10.1007/s000390050018
[145] Lebedeva, N.; Petrunin, A., 5-point CAT(0) spaces after Tetsu Toyoda, Anal. Geom. Metr. Spaces, 9, 160-166 (2021) · Zbl 1484.53079 · doi:10.1515/agms-2020-0126
[146] Leuştean, L.; Nicolae, A.; Sipoş, A., An abstract proximal point algorithm, J. Global Optim., 72, 553-577 (2018) · Zbl 1414.90267 · doi:10.1007/s10898-018-0655-9
[147] Leuştean, L.; Sipoş, A., An application of proof mining to the proximal point algorithm in CAT(0) spaces, Mathematics Almost Everywhere, 153-167 (2018), Hackensack, NJ: World Sci. Publ., Hackensack, NJ · Zbl 1416.03028 · doi:10.1142/9789813237315_0008
[148] Li, C.; López, G.; Martín-Márquez, V., Monotone vector fields and the proximal point algorithm on Hadamard manifolds, J. Lond. Math. Soc. (2), 79, 663-683 (2009) · Zbl 1171.58001 · doi:10.1112/jlms/jdn087
[149] Li, C.; López, G.; Martín-Márquez, V.; Wang, J-H, Resolvents of set-valued monotone vector fields in Hadamard manifolds, Set-Valued Var. Anal., 19, 361-383 (2011) · Zbl 1239.47043 · doi:10.1007/s11228-010-0169-1
[150] Lin, B.; Sturmfels, B.; Tang, X.; Yoshida, R., Convexity in tree spaces, SIAM J. Discrete Math., 31, 2015-2038 (2017) · Zbl 1370.05040 · doi:10.1137/16M1079841
[151] Linial, N.; Saks, M., The Euclidean distortion of complete binary trees, Discrete Comput. Geom., 29, 19-21 (2003) · Zbl 1008.05040 · doi:10.1007/s00454-002-2827-z
[152] Lytchak, A., Open map theorem for metric spaces, Algebra i Analiz, 17, 139-159 (2005) · Zbl 1152.53033
[153] A. Lytchak and A. Petrunin, Weak topology on CAT(0) spaces, preprint, arXiv:2107.09295. · Zbl 1523.53048
[154] Lytchak, A.; Petrunin, A., Cyclic projections in Hadamard spaces, J. Optim. Theory Appl., 194, 636-642 (2022) · Zbl 1495.90232 · doi:10.1007/s10957-022-02043-w
[155] Lytchak, A.; Stadler, S., Improvements of upper curvature bounds, Trans. Amer. Math. Soc., 373, 7153-7166 (2020) · Zbl 1453.53043 · doi:10.1090/tran/8123
[156] Martinet, B., Régularisation d’inéquations variationnelles par approximations successives, Rev. Française Informat. Recherche Opérationnelle, 4, 154-158 (1970) · Zbl 0215.21103
[157] Matoušek, J., On embedding trees into uniformly convex Banach spaces, Israel J. Math., 114, 221-237 (1999) · Zbl 0948.46011 · doi:10.1007/BF02785579
[158] Mayer, UF, Gradient flows on nonpositively curved metric spaces and harmonic maps, Comm. Anal. Geom., 6, 199-253 (1998) · Zbl 0914.58008 · doi:10.4310/CAG.1998.v6.n2.a1
[159] Mendel, M.; Naor, A., Expanders with respect to Hadamard spaces and random graphs, Duke Math. J., 164, 1471-1548 (2015) · Zbl 1316.05109 · doi:10.1215/00127094-3119525
[160] Mese, C., Uniqueness theorems for harmonic maps into metric spaces, Commun. Contemp. Math., 4, 725-750 (2002) · Zbl 1021.58011 · doi:10.1142/S0219199702000828
[161] Miller, E., Fruit flies and moduli: interactions between biology and mathematics, Notices Amer. Math. Soc., 62, 1178-1184 (2015) · Zbl 1338.92002 · doi:10.1090/noti1290
[162] Miller, E.; Owen, M.; Provan, JS, Polyhedral computational geometry for averaging metric phylogenetic trees, Adv. in Appl. Math., 68, 51-91 (2015) · Zbl 1329.68266 · doi:10.1016/j.aam.2015.04.002
[163] Miyadera, I.; Ôharu, S., Approximation of semi-groups of nonlinear operators, Tohoku Math. J. (2), 22, 24-47 (1970) · Zbl 0195.15001 · doi:10.2748/tmj/1178242858
[164] Monod, N., Superrigidity for irreducible lattices and geometric splitting, J. Amer. Math. Soc., 19, 781-814 (2006) · Zbl 1105.22006 · doi:10.1090/S0894-0347-06-00525-X
[165] Monod, N., Extreme points in non-positive curvature, Studia Math., 234, 265-270 (2016) · Zbl 1359.52002
[166] Moreau, J-J, Fonctions convexes duales et points proximaux dans un espace hilbertien, C. R. Acad. Sci. Paris, 255, 2897-2899 (1962) · Zbl 0118.10502
[167] Moreau, J-J, Propriétés des applications “prox”, C. R. Acad. Sci. Paris, 256, 1069-1071 (1963) · Zbl 0115.10802
[168] Moreau, J-J, Proximité et dualité dans un espace hilbertien, Bull. Soc. Math. France, 93, 273-299 (1965) · Zbl 0136.12101 · doi:10.24033/bsmf.1625
[169] Mosco, U., Convergence of convex sets and of solutions of variational inequalities, Advances in Math., 3, 510-585 (1969) · Zbl 0192.49101 · doi:10.1016/0001-8708(69)90009-7
[170] Movahedi, M.; Behmardi, D.; Hosseini, S., On the density theorem for the subdifferential of convex functions on Hadamard spaces, Pacific J. Math., 276, 437-447 (2015) · Zbl 1321.53046 · doi:10.2140/pjm.2015.276.437
[171] Navas, A., An \(L^1\) ergodic theorem with values in a non-positively curved space via a canonical barycenter map, Ergodic Theory Dynam. Systems, 33, 609-623 (2013) · Zbl 1277.37014 · doi:10.1017/S0143385711001015
[172] Neumayer, S.; Persch, J.; Steidl, G., Morphing of manifold-valued images inspired by discrete geodesics in image spaces, SIAM J. Imaging Sci., 11, 1898-1930 (2018) · Zbl 1429.65043 · doi:10.1137/17M1150906
[173] T.M.W. Nye, Convergence of random walks to Brownian motion on cubical complexes, preprint, arXiv:1508.02906. · Zbl 1441.60064
[174] Nye, TMW; Tang, X.; Weyenberg, G.; Yoshida, R., Principal component analysis and the locus of the Fréchet mean in the space of phylogenetic trees, Biometrika, 104, 901-922 (2017) · Zbl 07072335 · doi:10.1093/biomet/asx047
[175] Ohta, S., Harmonicity of totally geodesic maps into nonpositively curved metric spaces, Manuscripta Math., 114, 127-138 (2004) · Zbl 1064.53044 · doi:10.1007/s00229-004-0450-4
[176] Ohta, S., Markov type of Alexandrov spaces of non-negative curvature, Mathematika, 55, 177-189 (2009) · Zbl 1195.46019 · doi:10.1112/S0025579300001005
[177] Ohta, S., Self-contracted curves in CAT(0)-spaces and their rectifiability, J. Geom. Anal., 30, 936-967 (2020) · Zbl 1434.52012 · doi:10.1007/s12220-018-00126-7
[178] Ohta, S.; Pálfia, M., Discrete-time gradient flows and law of large numbers in Alexandrov spaces, Calc. Var. Partial Differential Equations, 54, 1591-1610 (2015) · Zbl 1335.51014 · doi:10.1007/s00526-015-0837-y
[179] Ohta, S.; Pálfia, M., Gradient flows and a Trotter-Kato formula of semi-convex functions on CAT(1)-spaces, Amer. J. Math., 139, 937-965 (2017) · Zbl 1372.49027 · doi:10.1353/ajm.2017.0025
[180] Owen, M., Computing geodesic distances in tree space, SIAM J. Discrete Math., 25, 1506-1529 (2011) · Zbl 1237.05045 · doi:10.1137/090751396
[181] Owen, M.; Provan, JS, A fast algorithm for computing geodesic distances in tree space, IEEE/ACM Trans. Comput. Biol. Bioinform., 8, 2-13 (2011) · doi:10.1109/TCBB.2010.3
[182] Papa Quiroz, EA; Oliveira, PR, Proximal point methods for quasiconvex and convex functions with Bregman distances on Hadamard manifolds, J. Convex Anal., 16, 49-69 (2009) · Zbl 1176.90361
[183] Parikh, N.; Boyd, S., Proximal algorithms, Found. Trends Optim., 1, 123-231 (2013)
[184] Pennec, X.; Fillard, P.; Ayache, N., A Riemannian framework for tensor computing, Int. J. Comput. Vis., 66, 41-66 (2006) · Zbl 1287.53031 · doi:10.1007/s11263-005-3222-z
[185] G. Perelman and A. Petrunin, Quasigeodesics and gradient curves in Alexandrov spaces, preprint, 1994.
[186] Petrunin, A., Applications of quasigeodesics and gradient curves, Comparison Geometry, 203-219 (1997), Cambridge: Cambridge Univ. Press, Cambridge · Zbl 0892.53026
[187] Peypouquet, J.; Sorin, S., Evolution equations for maximal monotone operators: asymptotic analysis in continuous and discrete time, J. Convex Anal., 17, 1113-1163 (2010) · Zbl 1214.47080
[188] Phelps, RR, Convex sets and nearest points, Proc. Amer. Math. Soc., 8, 790-797 (1957) · Zbl 0078.35701 · doi:10.1090/S0002-9939-1957-0087897-7
[189] Reich, S., Product formulas, nonlinear semigroups, and accretive operators, J. Functional Analysis, 36, 147-168 (1980) · Zbl 0437.47048 · doi:10.1016/0022-1236(80)90097-X
[190] Reich, S., A complement to Trotter’s product formula for nonlinear semigroups generated by the subdifferentials of convex functionals, Proc. Japan Acad. Ser. A Math. Sci., 58, 193-195 (1982) · Zbl 0521.47033 · doi:10.3792/pjaa.58.193
[191] Reich, S., Solutions of two problems of H. Brézis, J. Math. Anal. Appl., 95, 243-250 (1983) · Zbl 0521.47035 · doi:10.1016/0022-247X(83)90147-6
[192] Reich, S., The asymptotic behavior of a class of nonlinear semigroups in the Hilbert ball, J. Math. Anal. Appl., 157, 237-242 (1991) · Zbl 0747.47046 · doi:10.1016/0022-247X(91)90146-Q
[193] Reich, S.; Salinas, Z., Weak convergence of infinite products of operators in Hadamard spaces, Rend. Circ. Mat. Palermo (2), 65, 55-71 (2016) · Zbl 1348.47064 · doi:10.1007/s12215-015-0218-6
[194] Reich, S.; Salinas, Z., Metric convergence of infinite products of operators in Hadamard spaces, J. Nonlinear Convex Anal., 18, 331-345 (2017) · Zbl 1470.41032
[195] Reich, S.; Shafrir, I., Nonexpansive iterations in hyperbolic spaces, Nonlinear Anal., 15, 537-558 (1990) · Zbl 0728.47043 · doi:10.1016/0362-546X(90)90058-O
[196] Reich, S.; Shoikhet, D., Semigroups and generators on convex domains with the hyperbolic metric, Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend. Lincei (9) Mat. Appl., 8, 231-250 (1997) · Zbl 0905.47056
[197] Rešetnjak, JG, Non-expansive maps in a space of curvature no greater than \(K\), Sibirsk. Mat. Ž., 9, 918-927 (1968)
[198] Robbins, H.; Siegmund, D., A convergence theorem for non negative almost supermartingales and some applications, Optimizing Methods in Statistics, 233-257 (1971), New York: Academic Press, New York · Zbl 0286.60025
[199] Rockafellar, RT, Integrals which are convex functionals, Pacific J. Math., 24, 525-539 (1968) · Zbl 0159.43804 · doi:10.2140/pjm.1968.24.525
[200] Rockafellar, RT, Convex integral functionals and duality, Contributions to Nonlinear Functional Analysis, 215-236 (1971), New York: Academic Press, New York · Zbl 0295.49006 · doi:10.1016/B978-0-12-775850-3.50012-1
[201] Rockafellar, RT, Integrals which are convex functionals. II, Pacific J. Math., 39, 439-469 (1971) · Zbl 0236.46031 · doi:10.2140/pjm.1971.39.439
[202] Rockafellar, RT, Monotone operators and the proximal point algorithm, SIAM J. Control Optim., 14, 877-898 (1976) · Zbl 0358.90053 · doi:10.1137/0314056
[203] Sato, T., An alternative proof of Berg and Nikolaev’s characterization of CAT(0)-spaces via quadrilateral inequality, Arch. Math. (Basel), 93, 487-490 (2009) · Zbl 1221.53100 · doi:10.1007/s00013-009-0057-9
[204] Skwerer, S.; Provan, S.; Marron, JS, Relative optimality conditions and algorithms for treespace Fréchet means, SIAM J. Optim., 28, 959-988 (2018) · Zbl 1395.90239 · doi:10.1137/15M1050914
[205] Steidl, G., Combined first and second order variational approaches for image processing, Jahresber. Dtsch. Math.-Ver., 117, 133-160 (2015) · Zbl 1320.49006 · doi:10.1365/s13291-015-0113-2
[206] Stojkovic, I., Approximation for convex functionals on non-positively curved spaces and the Trotter-Kato product formula, Adv. Calc. Var., 5, 77-126 (2012) · Zbl 1245.47018 · doi:10.1515/acv.2011.011
[207] Storath, M.; Weinmann, A., Variational regularization of inverse problems for manifold-valued data, Inf. Inference, 10, 195-230 (2021) · Zbl 1528.65030 · doi:10.1093/imaiai/iaaa010
[208] Streets, J., The consistency and convergence of K-energy minimizing movements, Trans. Amer. Math. Soc., 368, 5075-5091 (2016) · Zbl 1334.53072 · doi:10.1090/tran/6508
[209] Sturm, K-T, Monotone approximation of energy functionals for mappings into metric spaces. I, J. Reine Angew. Math., 486, 129-151 (1997) · Zbl 0879.58018
[210] Sturm, K-T, Nonlinear Markov operators associated with symmetric Markov kernels and energy minimizing maps between singular spaces, Calc. Var. Partial Differential Equations, 12, 317-357 (2001) · Zbl 0987.31006 · doi:10.1007/PL00009916
[211] Sturm, K-T, Nonlinear Markov operators, discrete heat flow, and harmonic maps between singular spaces, Potential Anal., 16, 305-340 (2002) · Zbl 1049.31010 · doi:10.1023/A:1014888715237
[212] Sturm, K-T, Probability measures on metric spaces of nonpositive curvature, Heat Kernels and Analysis on Manifolds, Graphs, and Metric Spaces, Paris, 2002, 357-390 (2003), Providence, RI: Amer. Math. Soc., Providence, RI · Zbl 1040.60002
[213] Toyoda, T., An intrinsic characterization of five points in a CAT(0) space, Anal. Geom. Metr. Spaces, 8, 114-165 (2020) · Zbl 1475.53048 · doi:10.1515/agms-2020-0111
[214] Trotter, HF, Approximation of semi-groups of operators, Pacific J. Math., 8, 887-919 (1958) · Zbl 0099.10302 · doi:10.2140/pjm.1958.8.887
[215] Trotter, HF, On the product of semi-groups of operators, Proc. Amer. Math. Soc., 10, 545-551 (1959) · Zbl 0099.10401 · doi:10.1090/S0002-9939-1959-0108732-6
[216] Wald, A., Begründung einer koordinatenlosen Differentialgeometrie der Flächen, Erg. Math. Kolloqu., 7, 24-46 (1936) · JFM 62.0806.01
[217] Wang, M-T, Generalized harmonic maps and representations of discrete groups, Comm. Anal. Geom., 8, 545-563 (2000) · Zbl 0977.58018 · doi:10.4310/CAG.2000.v8.n3.a5
[218] Wenger, S., Isoperimetric inequalities of Euclidean type in metric spaces, Geom. Funct. Anal., 15, 534-554 (2005) · Zbl 1084.53037 · doi:10.1007/s00039-005-0515-x
[219] Wenger, S., Plateau’s problem for integral currents in locally non-compact metric spaces, Adv. Calc. Var., 7, 227-240 (2014) · Zbl 1286.49052 · doi:10.1515/acv-2012-0018
[220] Willis, A., Confidence sets for phylogenetic trees, J. Amer. Statist. Assoc., 114, 235-244 (2019) · Zbl 1462.62693 · doi:10.1080/01621459.2017.1395342
[221] Willis, A.; Bell, R., Uncertainty in phylogenetic tree estimates, J. Comput. Graph. Statist., 27, 542-552 (2018) · Zbl 07498931 · doi:10.1080/10618600.2017.1391697
[222] Xia, M., On sharp lower bounds for Calabi-type functionals and destabilizing properties of gradient flows, Anal. PDE, 14, 1951-1976 (2021) · Zbl 1478.32056 · doi:10.2140/apde.2021.14.1951
[223] Yokota, T., Convex functions and barycenter on CAT(1)-spaces of small radii, J. Math. Soc. Japan, 68, 1297-1323 (2016) · Zbl 1351.53057 · doi:10.2969/jmsj/06831297
[224] Yokota, T., Convex functions and \(p\)-barycenter on CAT(1)-spaces of small radii, Tsukuba J. Math., 41, 43-80 (2017) · Zbl 1378.53056 · doi:10.21099/tkbjm/1506353559
[225] T. Yokota, Law of large numbers in CAT(1)-spaces of small radii, Calc. Var. Partial Differential Equations, 57 (2018), no. 35. · Zbl 1395.53048
[226] Zaslavski, AJ, Inexact proximal point methods in metric spaces, Set-Valued Var. Anal., 19, 589-608 (2011) · Zbl 1261.90040 · doi:10.1007/s11228-011-0185-9
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.