×

A Trotter product formula for gradient flows in metric spaces. (English) Zbl 1232.49051

Summary: We prove a Trotter product formula for gradient flows in metric spaces. This result is applied to establish convergence in the \(L ^{2}\)-Wasserstein metric of the splitting method for some Fokker-Planck equations and porous medium type equations perturbed by a potential.

MSC:

49Q20 Variational problems in a geometric measure-theoretic setting
35A15 Variational methods applied to PDEs
47H20 Semigroups of nonlinear operators
82C31 Stochastic methods (Fokker-Planck, Langevin, etc.) applied to problems in time-dependent statistical mechanics

References:

[1] L. Ambrosio, N. Gigli, and G. Savaré, Gradient flows in metric spaces and in the space of probability measures, second ed., Lectures in Mathematics ETH Zürich, Birkhäuser Verlag, Basel, 2008. · Zbl 1145.35001
[2] H. Brezis, Opérateurs maximaux monotones et semi-groupes de contractions dans les espaces de Hilbert, North-Holland Publishing Co., Amsterdam, 1973, North-Holland Mathematics Studies, No. 5. Notas de Matemática (50).
[3] Ph. Clément, Introduction to gradient flows in metric spaces (II). Available at https://igk.math.uni-bielefeld.de/study-materials/notes-clement-part2.pdf .
[4] Clément Ph., Desch W.: Some remarks on the equivalence between metric formulations of gradient flows. Boll. Unione Mat. Ital. (9) 3(3), 583–588 (2010) · Zbl 1217.49009
[5] L. C. Evans and R. F. Gariepy, Measure theory and fine properties of functions, Studies in Advanced Mathematics, CRC Press, Boca Raton, FL, 1992. · Zbl 0804.28001
[6] Jordan R., Kinderlehrer D., Otto F.: The variational formulation of the Fokker-Planck equation. SIAM J. Math. Anal. 29(1), 1–17 (1998) · Zbl 0915.35120 · doi:10.1137/S0036141096303359
[7] Kato T., Masuda K.: Trotter’s product formula for nonlinear semigroups generated by the subdifferentials of convex functionals. J. Math. Soc. Japan 30(1), 169–178 (1978) · Zbl 0364.47031 · doi:10.2969/jmsj/03010169
[8] McCann R.J.: A convexity principle for interacting gases. Adv. Math. 128(1), 153–179 (1997) · Zbl 0901.49012 · doi:10.1006/aima.1997.1634
[9] Otto F.: The geometry of dissipative evolution equations: the porous medium equation. Comm. Partial Differential Equations 26(1–2), 101–174 (2001) · Zbl 0984.35089 · doi:10.1081/PDE-100002243
[10] Tudorascu A.: On the Jordan-Kinderlehrer-Otto variational scheme and constrained optimization in the Wasserstein metric. Calc. Var. Partial Differential Equations 32(2), 155–173 (2008) · Zbl 1145.35006 · doi:10.1007/s00526-007-0134-5
[11] C. Villani, Optimal transport, old and new, Grundlehren der Mathematischen Wissenschaften, vol. 338, Springer-Verlag, 2009. · Zbl 1156.53003
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.