×

Bi-fidelity reduced polynomial chaos expansion for uncertainty quantification. (English) Zbl 07492677

Summary: A ubiquitous challenge in design space exploration or uncertainty quantification of complex engineering problems is the minimization of computational cost. A useful tool to ease the burden of solving such systems is model reduction. This work considers a stochastic model reduction method (SMR), in the context of polynomial chaos expansions, where low-fidelity (LF) samples are leveraged to form a stochastic reduced basis. The reduced basis enables the construction of a bi-fidelity (BF) estimate of a quantity of interest from a small number of high-fidelity (HF) samples. A successful BF estimate approximates the quantity of interest with accuracy comparable to the HF model and computational expense close to the LF model. We develop new error bounds for the SMR approach and present a procedure to practically utilize these bounds in order to assess the appropriateness of a given pair of LF and HF models for BF estimation. The effectiveness of the SMR approach, and the utility of the error bound are presented in three numerical examples.

MSC:

74-XX Mechanics of deformable solids

References:

[1] Alnæs MS, Blechta J, Hake J, Johansson A, Kehlet B, Logg A, Richardson C, Ring J, Rognes ME, Wells GN (2015) The fenics project version 1.5. Arch Numer Softw 3(100)
[2] Berry, AC, The accuracy of the gaussian approximation to the sum of independent variates, Trans Am Math Soc, 49, 1, 122-136 (1941) · Zbl 0025.34603
[3] Blatman, G.; Sudret, B., An adaptive algorithm to build up sparse polynomial chaos expansions for stochastic finite element analysis, Probab Eng Mech, 25, 2, 183-197 (2010)
[4] Blatman, G.; Sudret, B., Adaptive sparse polynomial chaos expansion based on least angle regression, J Comput Phys, 230, 6, 2345-2367 (2011) · Zbl 1210.65019
[5] Candès, EJ; Wakin, MB, An introduction to compressive sampling, IEEE Signal Process Mag, 25, 2, 21-30 (2008)
[6] Chandrasheka P (2020) http://cpraveen.github.io
[7] Cheng, H.; Gimbutas, Z.; Martinsson, PG; Rokhlin, V., On the compression of low rank matrices, SIAM J Sci Comput, 26, 4, 1389-1404 (2005) · Zbl 1083.65042
[8] Cliffe, KA; Giles, MB; Scheichl, R.; Teckentrup, AL, Multilevel Monte Carlo methods and applications to elliptic PDEs with random coefficients, Comput Vis Sci, 14, 1, 3 (2011) · Zbl 1241.65012
[9] Constantine, PG; Doostan, A.; Iaccarino, G., A hybrid collocation/galerkin scheme for convective heat transfer problems with stochastic boundary conditions, Int J Numer Methods Eng, 80, 6-7, 868-880 (2009) · Zbl 1176.76107
[10] De, S.; Britton, J.; Reynolds, M.; Skinner, R.; Jansen, K.; Doostan, A., On transfer learning of neural networks using bi-fidelity data for uncertainty propagation, Int J Uncertain Quant, 10, 6, 543-573 (2020) · Zbl 1498.68231
[11] Diaz, P.; Doostan, A.; Hampton, J., Sparse polynomial chaos expansions via compressed sensing and d-optimal design, Comput Methods Appl Mech Eng, 336, 640-666 (2018) · Zbl 1441.65005
[12] Diskin B, Thomas J, Rumsey CL, Schwöppe A (2015) Grid convergence for turbulent flows, p 1746
[13] Donoho, DL, Compressed sensing, IEEE Trans Inf Theory, 52, 4, 1289-1306 (2006) · Zbl 1288.94016
[14] Doostan, A.; Owhadi, H., A non-adapted sparse approximation of PDEs with stochastic inputs, J Comput Phys, 230, 8, 3015-3034 (2011) · Zbl 1218.65008
[15] Doostan, A.; Ghanem, RG; Red-Horse, J., Stochastic model reduction for chaos representations, Comput Methods Appl Mech Eng, 196, 37-40, 3951-3966 (2007) · Zbl 1173.74411
[16] Doostan A, Geraci G, Iaccarino G (2016) A bi-fidelity approach for uncertainty quantification of heat transfer in a rectangular ribbed channel. American Society of Mechanical Engineers, pp V02CT45A031-V02CT45A031
[17] Eldred M (2009) Recent advances in non-intrusive polynomial chaos and stochastic collocation methods for uncertainty analysis and design, p 2274
[18] Ernst, OG; Mugler, A.; Starkloff, HJ; Ullmann, E., On the convergence of generalized polynomial chaos expansions, ESAIM Math Model Numer Anal, 46, 2, 317-339 (2012) · Zbl 1273.65012
[19] Fairbanks, HR; Doostan, A.; Ketelsen, C.; Iaccarino, G., A low-rank control variate for multilevel Monte Carlo simulation of high-dimensional uncertain systems, J Comput Phys, 341, 121-139 (2017) · Zbl 1378.65021
[20] Fairbanks, HR; Jofre, L.; Geraci, G.; Iaccarino, G.; Doostan, A., Bi-fidelity approximation for uncertainty quantification and sensitivity analysis of irradiated particle-laden turbulence, J Comput Phys, 402, 108996 (2020) · Zbl 1453.76128
[21] Fernández-Godino MG, Park C, Kim NH, Haftka RT (2016) Review of multi-fidelity models. arXiv preprint arXiv:1609.07196
[22] Forrester, AI; Sóbester, A.; Keane, AJ, Multi-fidelity optimization via surrogate modelling, Proc R Soc A Math Phys Eng Sci, 463, 2088, 3251-3269 (2007) · Zbl 1142.90489
[23] Ghanem, R.; Saad, G.; Doostan, A., Efficient solution of stochastic systems: application to the embankment dam problem, Struct Saf, 29, 3, 238-251 (2007)
[24] Ghanem RG, Spanos PD (1991) Stochastic finite element method: response statistics. In: Stochastic finite elements: a spectral approach, pp 101-119. Springer · Zbl 0722.73080
[25] Ghia, U.; Ghia, KN; Shin, C., High-re solutions for incompressible flow using the Navier-Stokes equations and a multigrid method, J Comput Phys, 48, 3, 387-411 (1982) · Zbl 0511.76031
[26] Giles, MB, Multilevel Monte Carlo path simulation, Oper Res, 56, 3, 607-617 (2008) · Zbl 1167.65316
[27] Giles MB (2013) Multilevel Monte Carlo methods. In: Monte Carlo and quasi-Monte Carlo methods 2012, pp 83-103. Springer · Zbl 1302.65004
[28] Gu, M.; Eisenstat, SC, Efficient algorithms for computing a strong rank-revealing qr factorization, SIAM J Sci Comput, 17, 4, 848-869 (1996) · Zbl 0858.65044
[29] Hampton, J.; Doostan, A., Coherence motivated sampling and convergence analysis of least squares polynomial chaos regression, Comput Methods Appl Mech Eng, 290, 73-97 (2015) · Zbl 1426.62174
[30] Hampton, J.; Doostan, A., Compressive sampling of polynomial chaos expansions: convergence analysis and sampling strategies, J Comput Phys, 280, 363-386 (2015) · Zbl 1349.94110
[31] Hampton, J.; Fairbanks, HR; Narayan, A.; Doostan, A., Practical error bounds for a non-intrusive bi-fidelity approach to parametric/stochastic model reduction, J Comput Phys, 368, 315-332 (2018) · Zbl 1392.62352
[32] Hill, PG; Peterson, CR, Mechanics and thermodynamics of propulsion (1992), Reading: Addison-Wesley Publishing Co, Reading
[33] Kennedy MC, O’Hagan A (2000) Predicting the output from a complex computer code when fast approximations are available. Biometrika 87(1):1-13 · Zbl 0974.62024
[34] Kleiber, W.; Sain, SR; Heaton, MJ; Wiltberger, M.; Reese, CS; Bingham, D., Parameter tuning for a multi-fidelity dynamical model of the magnetosphere, Ann Appl Stat, 7, 3, 1286-1310 (2013) · Zbl 1283.62243
[35] Laurenceau, J.; Sagaut, P., Building efficient response surfaces of aerodynamic functions with kriging and cokriging, AIAA J, 46, 2, 498-507 (2008)
[36] Le Gratiet, L.; Cannamela, C., Cokriging-based sequential design strategies using fast cross-validation techniques for multi-fidelity computer codes, Technometrics, 57, 3, 418-427 (2015)
[37] Le Gratiet, L.; Garnier, J., Recursive co-kriging model for design of computer experiments with multiple levels of fidelity, Int J Uncertain Quant, 4, 5, 365-386 (2014) · Zbl 1497.62213
[38] Le Maître, O.; Knio, OM, Spectral methods for uncertainty quantification: with applications to computational fluid dynamics (2010), Berlin: Springer, Berlin · Zbl 1193.76003
[39] Lyall, ME; Thrift, AA; Thole, KA; Kohli, A., Heat transfer from low aspect ratio pin fins, J Turbomach, 133, 1, 011001 (2011)
[40] Martinsson, R.; Tygert, M., A randomized algorithm for the decomposition of matrices, Appl Comput Harmon Anal, 30, 1, 47-68 (2011) · Zbl 1210.65095
[41] Mathelin, L.; Gallivan, K., A compressed sensing approach for partial differential equations with random input data, Commun Comput Phys, 12, 4, 919-954 (2012) · Zbl 1388.65018
[42] Narayan, A.; Gittelson, C.; Xiu, D., A stochastic collocation algorithm with multifidelity models, SIAM J Sci Comput, 36, 2, A495-A521 (2014) · Zbl 1296.65013
[43] Ng LWT, Eldred M (2012) Multifidelity uncertainty quantification using non-intrusive polynomial chaos and stochastic collocation, p 1852
[44] Padron AS, Alonso JJ, Eldred MS (2016) Multi-fidelity methods in aerodynamic robust optimization, p 0680
[45] Palar PS, Tsuchiya T, Parks G (2015) Decomposition-based evolutionary aerodynamic robust optimization with multi-fidelity point collocation non-intrusive polynomial chaos, p 1377
[46] Parussini, L.; Venturi, D.; Perdikaris, P.; Karniadakis, GE, Multi-fidelity gaussian process regression for prediction of random fields, J Comput Phys, 336, 36-50 (2017) · Zbl 1419.62272
[47] Peherstorfer, B.; Willcox, K.; Gunzburger, M., Survey of multifidelity methods in uncertainty propagation, inference, and optimization, Siam Rev, 60, 3, 550-591 (2018) · Zbl 1458.65003
[48] Peng, J.; Hampton, J.; Doostan, A., A weighted \(\ell_1\)-minimization approach for sparse polynomial chaos expansions, J Comput Phys, 267, 92-111 (2014) · Zbl 1349.65198
[49] Perdikaris P, Venturi D, Royset JO, Karniadakis GE (2015) Multi-fidelity modelling via recursive co-kriging and Gaussian-Markov random fields
[50] Perdikaris, P.; Venturi, D.; Karniadakis, GE, Multifidelity information fusion algorithms for high-dimensional systems and massive data sets, SIAM J Sci Comput, 38, 4, B521-B538 (2016) · Zbl 1342.62110
[51] Pope SB (2001) Turbulent flows · Zbl 0966.76002
[52] Raisee, M.; Kumar, D.; Lacor, C., A non-intrusive model reduction approach for polynomial chaos expansion using proper orthogonal decomposition, Int J Numer Methods Eng, 103, 4, 293-312 (2015) · Zbl 1352.80004
[53] Shevtsova I (2011) On the absolute constants in the Berry-Esseen type inequalities for identically distributed summands. arXiv preprint arXiv:1111.6554
[54] Skinner, RW; Doostan, A.; Peters, EL; Evans, JA; Jansen, KE, Reduced-basis multifidelity approach for efficient parametric study of naca airfoils, AIAA J, 57, 4, 1481-1491 (2019)
[55] Spalart P, Allmaras S (1992) A one-equation turbulence model for aerodynamic flows, p 439
[56] Whiting, CH; Jansen, KE, A stabilized finite element method for the incompressible Navier-Stokes equations using a hierarchical basis, Int J Numer Methods Fluids, 35, 1, 93-116 (2001) · Zbl 0990.76048
[57] Xiu, D., Numerical methods for stochastic computations: a spectral method approach (2010), Princeton: Princeton University Press, Princeton · Zbl 1210.65002
[58] Xiu, D.; Karniadakis, GE, The Wiener-Askey polynomial chaos for stochastic differential equations, SIAM J Sci Comput, 24, 2, 619-644 (2002) · Zbl 1014.65004
[59] Yan, L.; Guo, L.; Xiu, D., Stochastic collocation algorithms using \(\ell_1\)-minimization, Int J Uncertain Quant, 2, 3, 279-293 (2012) · Zbl 1291.65024
[60] Yang, X.; Karniadakis, GE, Reweighted \(\ell_1\)-minimization method for stochastic elliptic differential equations, J Comput Phys, 248, 87-108 (2013) · Zbl 1349.60113
[61] Zhu, X.; Narayan, A.; Xiu, D., Computational aspects of stochastic collocation with multifidelity models, SIAM/ASA J Uncertain Quant, 2, 1, 444-463 (2014) · Zbl 1306.65010
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.