×

Normal states are determined by their facial distances. (English) Zbl 1480.46075

The paper gives a beautiful result to distinguish two normal states on a semi-finite von Neumann algebra. Based on the distance to faces dependent on projections and clever using of spectral theory, the authors obtain that normal states with the same facial distances are the same for semi-finite von Neumann algebras. Hence facial distance is an interesting geometric invariant for normal states.

MSC:

46L10 General theory of von Neumann algebras
46L30 States of selfadjoint operator algebras
43A30 Fourier and Fourier-Stieltjes transforms on nonabelian groups and on semigroups, etc.
Full Text: DOI

References:

[1] E. M.Alfsen and F. W.Shultz, State spaces of operator algebras: Basic theory, orientations, and \(C^\ast \)‐products (Birkhüser, Boston, MA, 2001). · Zbl 0983.46047
[2] H. G.Dales, A. T.‐M.Lau and D.Strauss, ‘Banach algebras on semigroups and on their compactifications’, Mem. Amer. Math. Soc.205 (2010) 966, vi+165 pp. · Zbl 1192.43001
[3] M.Daws and H.Le Pham, ‘Isometries between quantum convolution algebras’, Q. J. Math.64 (2013) 373-396. · Zbl 1275.46043
[4] P.Eymard, ‘L’algbre de Fourier d’un groupe localement compact’, Bull. Soc. Math. France92 (1964) 181-236. · Zbl 0169.46403
[5] G. P.Geher, ‘Is it possible to determine a point lying in a simplex if we know the distances from the vertices?’, J. Math. Anal. Appl.439 (2016) 651-663. · Zbl 1337.52007
[6] M.Ghandehari, ‘Amenability properties of Rajchman algebras’, Indiana Univ. Math. J.61 (2012) 1369-1392. · Zbl 1277.43002
[7] R. H.Herman, ‘Centralizers and an ordering for faithful, normal states’, J. Funct. Anal.13 (1973) 313-323. · Zbl 0279.46037
[8] R. H.Herman and Takesaki, ‘States and automorphism groups of operator algebras’, Comm. Math. Phys.19 (1970) 142-160. · Zbl 0206.13001
[9] Z.Hu, M. S.Monfared and T.Traynor, ‘On character amenable Banach algebras’, Studia Math.193 (2009) 53-78. · Zbl 1175.22005
[10] Z.Hu, M.Neufang and Z.‐J.Ruan, ‘Module maps over locally compact quantum groups’, Studia Math.211 (2012) 111-145. · Zbl 1269.22004
[11] R. V.Kadison, ‘Transformations of states in operator theory and dynamics’, Topology3 (1965) 177-198. · Zbl 0129.08705
[12] E.Kaniuth and A. T.‐M.Lau, Fourier and Fourier-Stieltjes algebras on locally compact groups, Mathematical Surveys and Monographs 231 (American Mathematical Society, Providence, RI, 2018). · Zbl 1402.43001
[13] A. T.‐M.Lau, ‘The Fourier Stieltjes algebra of a topological semigroup with involution’, Pacific J. Math.77 (1978) 165-181. · Zbl 0426.43006
[14] A. T.‐M.Lau, ‘Analysis on a class of Banach algebras with applications to harmonic analysis on locally compact groups and semigroups’, Fund. Math.118 (1983) 161-175. · Zbl 0545.46051
[15] A. T.‐M.Lau and J.Ludwig, ‘Fourier-Stieltjes algebra of a topological group’, Adv. Math.229 (2012) 2000-2023. · Zbl 1236.22001
[16] A. T.‐M.Lau, C. K.Ng and N. C.Wong, ‘Metric semigroups that determine locally compact groups’, Q. J. Math.69 (2018) 501-508. · Zbl 1403.43001
[17] A. T.‐M.Lau, C. K.Ng and N. C.Wong, ‘Metric semi‐groups of normal states determine \(F\)‐algebras’, Q. J. Math.70 (2019) 429-450. · Zbl 1432.46047
[18] C.‐W.Leung, C.‐K.Ng and N.‐C.Wong, ‘The positive contractive part of a noncommutative \(L^p\)‐space is a complete Jordan invariant’, Linear Algebra Appl.519 (2017) 102-110. · Zbl 1368.46050
[19] C. W.Leung, C. K.Ng and N. C.Wong, ‘Metric preserving bijections between positive spherical shells of non‐commutative \(L^p\)‐spaces’, J. Operator Theory80 (2018) 429-452. · Zbl 1438.46076
[20] C. W.Leung, C. K.Ng and N. C.Wong, ‘On a variant of Tingley’s problem for some function spaces’, Preprint. · Zbl 1470.46016
[21] M.Mori, ‘Tingley’s problem through the facial structure of operator algebras’, J. Math. Anal. Appl.266 (2018) 1281-1298. · Zbl 1411.46007
[22] M.Takesaki, Theory of operator algebras II, Encyclopaedia of Mathematical Sciences 125 (Springer, Berlin, 2003). · Zbl 1059.46031
[23] M.Terp, \(L^p\)‐spaces associated with von Neumann algebras, Notes (Mathematics Institute, Copenhagen University, Copenhagen, 1981).
[24] T.Timmermann, An introduction to quantum groups and duality, from Hopf algebras to multiplicative unitaries and beyond (EMS Publishing House, Zurich, 2008). · Zbl 1162.46001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.