×

The positive contractive part of a noncommutative \(L^{p}\)-space is a complete Jordan invariant. (English) Zbl 1368.46050

R. V. Kadison [Ann. Math. (2) 56, 494–503 (1952; Zbl 0047.35703)] showed that several partial structures of a von Neumann algebra \(M\) can recover the von Neumann algebra up to Jordan \(*\)-isomorphisms. In this paper, the authors show that the positive part of the closed unit ball of a noncommutative \(L^p\)-space \((1\leq p\leq\infty)\), as a metric space, is a complete Jordan \(*\)-invariant for the underlying von Neumann algebra.

MSC:

46L10 General theory of von Neumann algebras
46L52 Noncommutative function spaces

Citations:

Zbl 0047.35703

References:

[1] Benyamini, Y.; Lindenstrauss, J., Geometric Nonlinear Functional Analysis, Amer. Math. Soc. Colloq. Publ., vol. 48 (2000), Amer. Math. Soc. · Zbl 0946.46002
[2] Connes, A., Caractérisation des espaces vectoriels ordonnés sous-jacents aux algèbres de von Neumann, Ann. Inst. Fourier, 24, 121-155 (1974) · Zbl 0287.46078
[3] Dye, H. A., On the geometry of projections in certain operator algebras, Ann. of Math., 61, 73-89 (1955) · Zbl 0064.11002
[4] Kadison, R. V., A generalized Schwarz inequality and algebraic invariants for operator algebras, Ann. of Math., 564, 494-503 (1952) · Zbl 0047.35703
[5] Kadison, R. V., Transformations of states in operator theory and dynamics, Topology, 3, suppl. 2, 177-198 (1965) · Zbl 0129.08705
[6] Leung, C.-W.; Ng, C.-K.; Wong, N.-C., Transition probabilities of normal states determine the Jordan structure of a quantum system, J. Math. Phys., 57, Article 015212 pp. (2016), 13 pages · Zbl 1330.81030
[7] Mankiewicz, P., On extension of isometries in normed linear spaces, Bull. Acad. Pol. Sci., Sér. Sci. Math. Astron. Phys., 20, 367-371 (1972) · Zbl 0234.46019
[8] Nelson, E., Notes on non-commutative integration, J. Funct. Anal., 15, 103-116 (1974) · Zbl 0292.46030
[9] Pisier, G.; Xu, Q., Non-commutative Lp-spaces, (Handbook of the Geometry of Banach Spaces, vol. 2 (2003), North-Holland: North-Holland Amsterdam), 1459-1517 · Zbl 1046.46048
[10] Raynaud, Y.; Xu, Q., On subspaces of noncommutative \(L_p\)-spaces, J. Funct. Anal., 203, 149-196 (2003) · Zbl 1056.46056
[11] Russo, B., Isometrics of \(L^p\)-spaces associated with finite von Neumann algebras, Bull. Amer. Math. Soc., 74, 228-232 (1968) · Zbl 0153.16604
[12] Schmitt, L. M., Order derivations on \(L^P\)-spaces of \(W^\ast \)-algebras, Math. Z., 196, 117-124 (1987) · Zbl 0615.46061
[13] Sherman, D., Noncommutative \(L^p\)-structure encodes exactly Jordan structure, J. Funct. Anal., 211, 150-166 (2005) · Zbl 1084.46050
[14] Tam, P.-K., Isometries of \(L_p\)-spaces associated with semifinite von Neumann algebras, Trans. Amer. Math. Soc., 254, 339-354 (1979) · Zbl 0393.46053
[15] Terp, M., \(L^p\)-Spaces Associated with von Neumann Algebras, Notes (1981), Math. Institute, Copenhagen Univ.
[16] Yeadon, F. J., Isometries of noncommutative \(L^p\)-spaces, Math. Proc. Cambridge Philos. Soc., 90, 1, 41-50 (1981) · Zbl 0483.46041
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.