×

New magic neutrino mass textures with three free parameters. (English) Zbl 1532.81069

Summary: Motivated by current experiments on searching for neutrinoless double beta decays, we study the phenomenological consequences and testability of the constraint relation “\(\mathcal{M}_{ii} = \mathcal{M}_{jj} + \mathcal{M}_{e\mu} + \mathcal{M}_{e\tau}\)”, for \(i, j = e\), \(\mu\), \(\tau\), on the magic neutrino mass matrix elements. This hypothesis is inspired by the \(\mu - \tau\) symmetry and gives rise to six different Majorana neutrino mass textures, including two textures one-zero. These obtained textures are diagonalized by the well-known trimaximal mixing which provides nonzero and nonmaximal reactor and atmospheric angles, respectively. Depending on the predominance of the \(e\)-row or \(\mu-\tau\) block, the preferred neutrino mass hierarchy and the lower limits on the \(| \mathcal{M}_{i i} |\) effective Majorana masses for each magic matrix are determined. Furthermore, in light of the global-fit results of neutrino oscillation parameters as reported by NuFIT 5.1, we also study the testability of these textures at the proposed neutrinoless double beta decay experiments such as KamLAND-Zen, GERDA Phase-II and nEXO, by incorporating the effective Majorana neutrino masses \(|\mathcal{M}_{ij}|\) that are generated through these neutrino mass matrices.

MSC:

81U90 Particle decays
81V35 Nuclear physics
41A29 Approximation with constraints
83C57 Black holes

References:

[1] Ahmad, Q. R., Direct evidence for neutrino flavor transformation from neutral-current interactions in the Sudbury neutrino observatory, Phys. Rev. Lett., 89, Article 011301 pp. (2002)
[2] Eguchi, K., First results from KamLAND: evidence for reactor antineutrino disappearance, Phys. Rev. Lett., 90, Article 021802 pp. (2003)
[3] Ahn, M. H., Indications of neutrino oscillation in a 250 km long-baseline experiment, Phys. Rev. Lett., 90, Article 041801 pp. (2003)
[4] An, F. P., Observation of electron-antineutrino disappearance at Daya Bay, Phys. Rev. Lett., 108, Article 171803 pp. (2012)
[5] Ahn, J. K., Observation of reactor electron antineutrinos disappearance in the RENO experiment, Phys. Rev. D, 108, Article 191802 pp. (2012)
[6] de Salas, P. F., 2020 Global reassessment of the neutrino oscillation picture, J. High Energy Phys., 02, Article 071 pp. (2021)
[7] Capozzi, F.; Di Valentino, E.; Lisi, E.; Marrone, A.; Melchiorri, A.; Palazzo, A., Unfinished fabric of the three neutrino paradigm, Phys. Rev. D, 104 (2021)
[8] Capozzi, F.; Lisi, E.; Marrone, A.; Palazzo, A., Current unknowns in the three-neutrino framework, Prog. Part. Nucl. Phys., 102, 48 (2018)
[9] De Salas, P. F.; Gariazzo, S.; Mena, O.; Ternes, C. A.; Tortola, M., Neutrino mass ordering from oscillations and beyond: 2018 status and future prospects, Front. Astron. Space Sci., 5, 36 (2018)
[10] Aartsen, M. G., Combined sensitivity to the neutrino mass ordering with JUNO, the IceCube Upgrade, and PINGU, Phys. Rev. D, 101, Article 032006 pp. (2020)
[11] Esteban, I.; Gonzalez-Garcia, M. C.; Maltoni, M.; Schwetze, T.; Zhoue, A., The fate of hints: updated global analysis of three-flavor neutrino oscillations, J. High Energy Phys., 09, Article 178 pp. (2020)
[12] Abe, K., Physics potentials with the second Hyper-Kamiokande detector in Korea, Prog. Theor. Exp. Phys., 063C01 (2018)
[13] Abe, K., HyperKamiokande design report
[14] Minakata, H.; Parke, S. J., Precision measurements of \(\theta_{23}\) and δ using only the electron neutrino appearance experiments, Phys. Rev. D, 87, Article 113005 pp. (2013)
[15] Lam, C. S., Neutrino mass matrices with two equalities between the elements or cofactors, Phys. Rev. D, 74, Article 113004 pp. (2006)
[16] Grimus, W.; Lavoura, L., A model for trimaximal lepton mixing, J. High Energy Phys., 09, Article 106 pp. (2008)
[17] Bjorken, J. D.; Harrison, P. F.; Scott, W. G., Simplified unitarity triangles for the lepton sector, Phys. Rev. D, 74, Article 073012 pp. (2006)
[18] Kumar, S., Unitarity constraints on trimaximal mixing, Phys. Rev. D, 82, Article 013010 pp. (2010)
[19] Harrison, P. F.; Perkins, D. H.; Scott, W. G., Tri-bimaximal mixing and the neutrino oscillation data, Phys. Lett. B, 530 (2002)
[20] Harrison, P. F.; Scott, W. G., \( \mu - \tau\) reflection symmetry in lepton mixing and neutrino oscillations, Phys. Lett. B, 547, 219 (2002)
[21] Dolinski, M. J.; Poon, A. W.P.; Rodejohann, W., Neutrinoless double beta decay: status and prospects, Annu. Rev. Nucl. Part. Sci., 49, 219 (2019)
[22] Agostini, M.; Benato, G.; Detwiler, J. A.; Menéndez, J.; Vissani, F., Toward the discovery of matter creation with neutrinoless double-beta decay
[23] Cirigliano, V., Neutrinoless double beta decay: a roadmap for matching theory to experiment
[24] Furry, W. H., On transition probabilities in double beta-disintegration, Phys. Rev., 56, 1184-1193 (1939) · Zbl 0023.09105
[25] Rodejohann, W., Neutrinoless double beta decay and particle physics, Int. J. Mod. Phys. E, 20, 1833-1930 (2011)
[26] Kotila, J.; Iachello, F., Phase space factors for double β decay, Phys. Rev. C, 85, Article 034316 pp. (2012)
[27] Tanabashi, M., Review of Particle Physics, Phys. Rev. D, 98, Article 030001 pp. (2018)
[28] Gando, A., Search for Majorana neutrinos near the inverted mass hierarchy region with KamLAND-Zen, Phys. Rev. Lett., 117, 8, Article 082503 pp. (2016)
[29] Agostini, M.; Benato, G.; Detwiler, J., Discovery probability of next-generation neutrinoless double-β decay experiments, Phys. Rev. D, 96, Article 053001 pp. (2017)
[30] Alduino, C., First results from CUORE: a search for lepton number violation via \(0 \nu \beta \beta\) decay of^130Te, Phys. Rev. Lett., 120, Article 132501 pp. (2018)
[31] Agostini, M., Improved limit on neutrinoless double-β decay of^76ge from GERDA Phase II, Phys. Rev. Lett., 120, Article 132503 pp. (2018)
[32] Abe, S., Search for the Majorana nature of neutrinos in the inverted mass ordering region with KamLAND-Zen, Phys. Rev. Lett., 130, Article 051801 pp. (2023)
[33] Zhang, J.; Zhou, S., Determination of neutrino mass ordering in future^76Ge-based neutrinoless double-beta decay experiments, Phys. Rev. D, 93, Article 016008 pp. (2016)
[34] An, F., Neutrino physics with JUNO, J. Phys. G, 43, Article 030401 pp. (2016)
[35] Abi, B., Long-baseline neutrino oscillation physics potential of the DUNE experiment, Eur. Phys. J. C, 80, 978 (2020)
[36] Aiello, S., Determining the neutrino mass ordering and oscillation parameters with KM3NeT/ORCA, Eur. Phys. J. C, 82, 26 (2022)
[37] Agostini, M.; Benato, G.; Detwiler, J. A.; Menéndez, J.; Vissani, F., Testing the inverted neutrino mass ordering with neutrinoless double-β decay, Phys. Rev. C, 104, Article 042501 pp. (2021)
[38] Fritzsch, H.; Xing, Z. Z., Mass and flavor mixing schemes of quarks and leptons, Prog. Part. Nucl. Phys., 45, 1 (2000)
[39] Berger, M. S.; Siyeon, K., Discrete flavor symmetries and mass matrix textures, Phys. Rev. D, 64, Article 053006 pp. (2001)
[40] Grimus, W.; Joshipura, A. S.; Lavoura, L.; Tanimoto, M., Symmetry realization of texture zeros, Eur. Phys. J. C, 36, 227 (2004)
[41] Dev, S.; Gupta, S.; Gautam, R. R., Zero textures of the neutrino mass matrix from cyclic family symmetry, Phys. Lett. B, 701, 605 (2011)
[42] Gonz alez Felipe, R.; Serodio, H., Abelian realization of phenomenological two-zero neutrino textures, Nucl. Phys. B, 886, 75 (2014) · Zbl 1325.81178
[43] Xing, Z-z., Texture zeros and Majorana phases of the neutrino mass matrix, Phys. Lett. B, 530, 159 (2002)
[44] Framptona, P. H.; Glashow, S. L.; Marfatia, D., Zeroes of the neutrino mass matrix, Phys. Lett. B, 536, 79 (2002)
[45] Merle, A.; Rodejohann, W., The elements of the neutrino mass matrix: allowed ranges and implications of texture zeros, Phys. Rev. D, 73, Article 073012 pp. (2006)
[46] Dev, S.; Kumar, S.; Verma, S.; Gupta, S., Phenomenological implications of a class of neutrino mass matrices, Nucl. Phys. B, 784 (2007)
[47] Choubey, S.; Rodejohann, W.; Roy, P., Phenomenological consequences of four zero neutrino Yukawa textures, Nucl. Phys. B, 808 (2009) · Zbl 1192.81356
[48] Dev, S.; Gautam, R. R.; Singh, L.; Gupta, M., Near maximal atmospheric neutrino mixing in neutrino mass models with two texture zeros, Phys. Rev. D, 90, Article 013021 pp. (2014)
[49] Gautam, R. R.; Kumar, S., Zeros in the magic neutrino mass matrix, Phys. Rev. D, 94, Article 036004 pp. (2016)
[50] Lavoura, L., Zeros of the inverted neutrino mass matrix, Phys. Lett. B, 609, 317 (2005)
[51] Lashin, E. I.; Chamoun, N., Zero minors of the neutrino mass matrix, Phys. Rev. D, 78, Article 073002 pp. (2008)
[52] Wang, W., Parallel texture structures with cofactor zeros in lepton sector, Phys. Lett. B, 733, 320 (2014)
[53] Kaneko, S.; Sawanaka, H.; Tanimoto, M., Hybrid textures of neutrinos, J. High Energy Phys., 08, Article 073 pp. (2005)
[54] Wang, W., Neutrino mass textures with one vanishing minor and two equal cofactors, Eur. Phys. J. C, 73, 2551 (2013)
[55] Dev, S.; Raj, D., New hybrid textures for neutrino mass matrices, Nucl. Phys. B, 957, Article 115081 pp. (2020) · Zbl 1473.81226
[56] Dev, S.; Gautam, R. R.; Singh, L., Neutrino mass matrices with two equalities between the elements or cofactors, Phys. Rev. D, 87, Article 073011 pp. (2013)
[57] Han, J.; Wang, R.; Wang, W.; Wei, X. N., Neutrino mass matrices with one texture equality and one vanishing neutrino mass, Phys. Rev. D, 96, Article 075043 pp. (2017)
[58] Ismael, A.; Lashin, E. I.; AlKhateeb, M.; Chamoun, N., Texture of one equality in neutrino mass matrix, Nucl. Phys. B, 971, Article 115541 pp. (2021) · Zbl 07408778
[59] Gautam, R. R.; Kumar, S., A new texture of neutrino mass matrix with three constraints, Phys. Lett. B, 820, Article 136504 pp. (2021) · Zbl 07414503
[60] Barger, V.; Pakvasa, S.; Weiler, T. J.; Whisnant, K., Bi-maximal mixing of three neutrinos, Phys. Lett. B, 437, 107 (1998)
[61] Georgi, H.; Glashow, S. L., Neutrinos on earth and in the heavens, Phys. Rev. D, 61, Article 097301 pp. (2000)
[62] Grimus, W.; Joshipura, A. S.; Lavoura, L.; Tanimoto, M., Symmetry realization of texture zeros, Eur. Phys. J. C, 36, 227 (2004)
[63] Lam, C. S., Magic neutrino mass matrix and the Bjorken-Harrison-Scott parameterization, Phys. Lett. B, 640, 260 (2006)
[64] Albright, C. H.; Rodejohann, W., Comparing trimaximal mixing and its variants with deviations from tri-bimaximal mixing, Eur. Phys. J. C, 62, 599 (2009)
[65] Channey, K. S.; Kumar, S., Two simple textures of the magic neutrino mass matrix, J. Phys. G, Nucl. Part. Phys., 46, Article 015001 pp. (2019)
[66] Antusch, S.; Huber, P.; King, S. F.; Schwetz, T., Neutrino mixing sum rules and oscillation experiments, J. High Energy Phys., 04, Article 060 pp. (2007)
[67] Petcov, S. T., Predicting the values of the leptonic CP violation phases in theories with discrete flavour symmetries, Nucl. Phys. B, 892, 400 (2015) · Zbl 1328.81242
[68] Ballett, P.; King, S. F.; Luhn, C.; Pascoli, S.; Schmidt, M. A., Testing atmospheric mixing sum rules at precision neutrino facilities, Phys. Rev. D, 89, Article 016016 pp. (2014)
[69] Ballett, P.; King, S. F.; Luhn, C.; Pascoli, S.; Schmidt, M. A., Testing solar lepton mixing sum rules in neutrino oscillation experiments, J. High Energy Phys., 12, Article 122 pp. (2014)
[70] Girardi, I.; Petcov, S. T.; Titov, A. V., Determining the Dirac CP violation phase in the neutrino mixing matrix from sum rules, Nucl. Phys. B, 894, 733 (2015) · Zbl 1328.81235
[71] Blennow, M.; Ghosh, M.; Ohlsson, T.; Titov, A., Testing lepton flavor models at ESSnuSB, J. High Energy Phys., 07, Article 014 pp. (2020)
[72] Blennow, M.; Ghosh, M.; Ohlsson, T.; Titov, A., Probing lepton flavor models at future neutrino experiments, Phys. Rev. D, 102, Article 115004 pp. (2020)
[73] Altarelli, G.; Feruglio, F., Discrete flavor symmetries and models of neutrino mixing, Rev. Mod. Phys., 82, 2701 (2010)
[74] Ishimori, H.; Kobayashi, T.; Ohki, H.; Okada, H.; Shimizu, Y.; Tanimoto, M., Non-Abelian discrete symmetries in particle physics, Prog. Theor. Phys. Suppl., 183, 1 (2010) · Zbl 1196.81276
[75] King, S. F.; Luhn, C., Neutrino mass and mixing with discrete symmetry, Rep. Prog. Phys., 76, Article 056201 pp. (2013)
[76] King, S. F., Models of neutrino mass, mixing and CP violation, J. Phys. G, 42, Article 123001 pp. (2015)
[77] Ouahid, M. A.; Loualidi, M. A.; Ahl Laamara, R.; Saidi, E. H., Neutrino phenomenology in the flavored NMSSM without domain wall problems, Phys. Rev. D, 102, Article 115023 pp. (2020)
[78] Ouahid, M. A.; Ahl Laamara, R., Neutrino and doubly charged Higgs boson phenomenology in flavored-TNMSSM, Nucl. Phys. B, 974, Article 115640 pp. (2022) · Zbl 1483.81154
[79] Esteban, I.; Gonzalez-Garcia, M. C.; Hernandez-Cabezudo, A.; Maltoni, M.; Schwetz, T., Global analysis of three-flavour neutrino oscillations: synergies and tensions in the determination of \(\theta_{23}, \delta_{C P}\) and the mass ordering, J. High Energy Phys., 01, Article 106 pp. (2019)
[80] Xing, Z. Z., No hope to kinematically detect the effective masses of muon and tau neutrinos
[81] Li, Y. F.; Cao, J.; Wang, Y.; Zhan, L., Unambiguous determination of the neutrino mass hierarchy using reactor neutrinos, Phys. Rev. D, 88, Article 013008 pp. (2013)
[82] Zyla, P. A., Review of Particle Physics, Prog. Theor. Exp. Phys., 2020, Article 083C01 pp. (2020)
[83] Frigerio, M.; Smirnov, A. Y., Structure of neutrino mass matrix and CP-violation, Nucl. Phys. B, 640, 233 (2002)
[84] King, S. F.; Merle, A.; Morisi, S.; Shimizu, Y.; Tanimoto, M., Neutrino mass and mixing: from theory to experiment, New J. Phys., 16, Article 045018 pp. (2014)
[85] Ludl, P. O.; Grimus, W., A complete survey of texture zeros in the lepton mass matrices, J. High Energy Phys., 07, Article 090 pp. (2014) · Zbl 1288.20066
[86] Zhou, S.; Liu, J. Y., Hybrid textures of Majorana neutrino mass matrix and current experimental tests, Phys. Rev. D, 87, Article 093010 pp. (2013)
[87] Stocker, P., Strengthening the bound on the mass of the lightest neutrino with terrestrial and cosmological experiments, Phys. Rev. D, 103, Article 123508 pp. (2021)
[88] Andringa, S., Current status and future prospects of the SNO+ experiment, Adv. High Energy Phys., 6194250 (2016)
[89] Ma, E.; Raidal, M., Neutrino mass, muon anomalous magnetic moment, and lepton flavor nonconservation, Phys. Rev. Lett., 87, Article 011802 pp. (2001)
[90] Kumar, S., Implications of a class of neutrino mass matrices with texture zeros for nonzero \(\theta_{13}\), Phys. Rev. D, 84, Article 077301 pp. (2011)
[91] Lashin, E.; Chamoun, N., One-zero textures of Majorana neutrino mass matrix and current experimental tests, Phys. Rev. D, 85, Article 113011 pp. (2012)
[92] Gautam, R. R., Trimaximal mixing with a texture zero, Phys. Rev. D, 97, Article 055022 pp. (2018)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.