×

New hybrid textures for neutrino mass matrices. (English) Zbl 1473.81226

Summary: We perform a systematic investigation of the texture structures of Majorana neutrino mass matrix \(M_\nu\) having two texture zeros and an equality between two nonzero matrix elements, in the light of recent neutrino oscillation data. Among forty-two possible textures, it is found that only eight textures are compatible with the current experimental data at \(3\sigma\) C.L. Out of these phenomenologically viable textures, six follow normal mass ordering while remaining two satisfy the inverted mass ordering of neutrino mass spectrum. In the numerical analysis, we carry out a scan over the possible space of all viable patterns. We present the implications of each allowed patterns for three mixing angles (solar, reactor and atmospheric), leptonic CP-violation, neutrino mass scale and the neutrinoless double beta decay indicating strong correlations between oscillation parameters. The symmetry realization of one of the viable textures is also presented.

MSC:

81V15 Weak interaction in quantum theory
81V35 Nuclear physics
81U90 Particle decays

References:

[1] Fukuda, Y., Phys. Rev. Lett., 81, 1562 (1998)
[2] Fogli, G. L.; Lisi, E., Phys. Rev. D, 54, 3667 (1996)
[3] Iwamoto, K., Recent results from T2K and future prospects, ICHEP2016. ICHEP2016, Proc. Sci., 517 (2016); Vahle, P., New results from NOvA, (Proceedings of XXVII International Conference on Neutrino Physics and Astrophysics. Proceedings of XXVII International Conference on Neutrino Physics and Astrophysics, London, UK, July 4-9, 2016 (2016), IOP Publishing: IOP Publishing London)
[4] Frampton, P. H.; Glashow, S. L.; Marfatia, D., Phys. Lett. B, 536, 79 (2002); Fritzsch, H.; Xing, Z.-z., Phys. Lett. B, 530, 159 (2002); Dev, S.; Kumar, S.; Verma, S.; Gupta, S., Nucl. Phys. B, 784, 103 (2007); Dev, S.; Kumar, S.; Verma, S.; Gupta, S., Phys. Rev. D, 76, Article 013002 pp. (2007); Fritzsch, H.; Xing, Z.-z.; Zhou, S., J. High Energy Phys., 09, Article 083 pp. (2011); Ludl, P. O.; Morisi, S.; Peinado, E., Nucl. Phys. B, 857, 411 (2012); Meloni, D.; Blanken-burg, G., Nucl. Phys. B, 867, 749 (2013); Dev, S.; Singh, L.; Raj, D., Eur. Phys. J. C, 75, 394 (2015)
[5] Desai, B. R.; Roy, D. P.; Vaucher, A. R., Mod. Phys. Lett. A, 18, 1355 (2003); Merle, A.; Rodejohann, W., Phys. Rev. D, 73, Article 073012 pp. (2006); Randhawa, M.; Ahuja, G.; Gupta, M., Phys. Lett. B, 643, 175 (2006); Ahuja, G.; Kumar, S.; Randhawa, M.; Gupta, M.; Dev, S., Phys. Rev. D, 76, Article 013006 pp. (2007); Branco, G. C.; Emmannuel-Costa, D.; Gonzalez Felipe, R.; Serodio, H., Phys. Lett. B, 670, 340 (2009); Gupta, M.; Ahuja, G., Int. J. Mod. Phys. A, 27, Article 1230033 pp. (2012); Grimus, W.; Ludl, P. O., J. Phys. G, 40, Article 055003 pp. (2013)
[6] Lavoura, L., Phys. Lett. B, 609, 317 (2005); Lashin, E. I.; Chamoun, N., Phys. Rev. D, 78, Article 073002 pp. (2008); Lashin, E. I.; Chamoun, N., Phys. Rev. D, 80, Article 093004 pp. (2009); Dev, S.; Verma, S.; Gupta, S.; Gautam, R. R., Phys. Rev. D, 81, Article 053010 pp. (2010); Dev, S.; Gupta, S.; Gautam, R. R., Mod. Phys. Lett. A, 26, 501 (2011); Araki, T.; Heeck, J.; Kubo, J., J. High Energy Phys., 07, Article 083 pp. (2012); Dev, S.; Gupta, S.; Gautam, R. R.; Singh, L., Phys. Lett. B, 706, 168 (2011); Dev, S.; Raj, D.; Gautam, R. R., Phys. Rev. D, 96, Article 095002 pp. (2017)
[7] Dev, S.; Gautam, R. R.; Singh, L., Phys. Rev. D, 87, Article 073011 pp. (2013); Han, J.; Wang, R.; Wang, W.; Wei, X.-N., Phys. Rev. D, 96, Article 075043 pp. (2017)
[8] Kaneko, S.; Sawanaka, H.; Tanimoto, M., J. High Energy Phys., 08, Article 073 pp. (2005); Dev, S.; Verma, S.; Gupta, S., Phys. Lett. B, 687, 53 (2010); Dev, S.; Gupta, S.; Gautam, R. R., Phys. Rev. D, 82, Article 073015 pp. (2010); Wang, W., Eur. Phys. J. C, 73, 2551 (2013); Dev, S.; Gautam, R. R.; Singh, L., Phys. Rev. D, 88, Article 033008 pp. (2013)
[9] Liu, Ji-Yuan; Zhou, Shun, Phys. Rev. D, 87, Article 093010 pp. (2013)
[10] Pontecorvo, B., Zh. Eksp. Teor. Fiz., 53, 1717 (1967); Maki, Z.; Nakagawa, M.; Sakata, S., Prog. Theor. Phys., 28, 870 (1962)
[11] Jarlskog, C., Phys. Rev. Lett., 55, 1039 (1985)
[12] Arnaboldi, C., Phys. Lett. B, 584, 260 (2004)
[13] Arnaboldi, C., Nucl. Instrum. Methods Phys. Res., Sect. A, 518, 775 (2004)
[14] Gaitskell, R., Majorana Collaboration
[15] Barabash, A. S., Czechoslov. J. Phys., 52, 567 (2002)
[16] Danilov, M., Phys. Lett. B, 480, 12 (2000)
[17] Aghanim, N.
[18] Esteban, I.; Gonzalez-Garcia, M. C.; Hernandez-Cabezudo, A.; Maltoni, M.; Schwetz, T., J. High Energy Phys., 01, Article 106 pp. (2019); (2019), NuFIT 4.1
[19] Konetschny, W.; Kummer, W., Phys. Lett. B, 70, 433 (1977); Schechter, J.; Valle, J. W.F., Phys. Rev. D, 22, 2227 (1980); Cheng, T. P.; Li, L. F., Phys. Rev. D, 22, 2860 (1980); Magg, M.; Wetterich, C., Phys. Lett. B, 94, 61 (1980); Lazarides, G.; Shafi, Q.; Wetterich, C., Nucl. Phys. B, 181, 287 (1981); Mohapatra, R. N.; Senjanovic, G., Phys. Rev. D, 23, 165 (1981)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.