×

A new numerical technique for index-3 DAEs arising from constrained multibody mechanical systems. (English) Zbl 1490.65149

MSC:

65L80 Numerical methods for differential-algebraic equations
65L05 Numerical methods for initial value problems involving ordinary differential equations
65L20 Stability and convergence of numerical methods for ordinary differential equations

References:

[1] Shabana, A. A., Dynamics of Multibody Systems (2013), New York, NY, USA: Cambridge University Press, New York, NY, USA · Zbl 1291.70002
[2] Han, F.; Qiao, Z.; Chen, F., Dynamic modeling, simulation, and flight test of a rocket-towed net system, Mathematical Problems in Engineering, 2019 (2019) · Zbl 1435.70022 · doi:10.1155/2019/1523828
[3] Borrdephong, R.; Derek, I. G.; Michiel, S.; De Wagter, C.; Riender, H.; Alexei, S.; Henk, A. P. B., Multibody system modelling of unmanned aircraft system collisions with the human head, International Journal of Crashworthiness, 25, 6, 689-707 (2020) · doi:10.1080/13588265.2019.1633818
[4] Matteo, B.; Giacomo, M.; Giulio, R., Dynamic handling characterization and set-up optimization for a formula SAE race car via multi-body simulation, J. Machines, 9, 6 (2021) · doi:10.3390/machines9060126
[5] Manrique-Escobar, C. A.; Pappalardo, C. M.; Guida, D. A., Multibody system Approach for the systematic development of a closed-chain kinematic model for two-wheeled vehicles, Machines, 9 (2021) · doi:10.3390/machines9110245
[6] Moritz, G.; David, H.; Yonas, Z.; Moritz, B.; Benrhnard, T.; Stelian, C., Analytically differentiable dynamics for multi-body systems with friction contact, ACM Transactions on Graphics, 39, 6 (2020)
[7] Haug, E., Computer Aided Kinematics and Dynamics of Mechanical Systems: Basic Methods (1989), Massachusetts, MA, USA: Allyn & Bacon, Massachusetts, MA, USA
[8] Brenan, K. E.; Campbell, S. L.; Petzold, L. R., The Numerical Solution of Initial-Value Problems in Differential-Algebraic Equations (1989), New York, NY, USA: North-Holland, New York, NY, USA · Zbl 0699.65057
[9] Betts, J. T.; Campbell, S. L.; Thompson, K. C., Direct transcription solution of optimal control problems with differential algebraic equations with delays, Proceedings of the 14 th. IASTED, International Symposium on Intelligent Systems and Control (ISC 2013) · doi:10.2316/p.2013.807-003
[10] Campbell, S.; Kunkel, P., Solving higher index DAE optimal control problems, Numerical Algebra, Control and Optimization, 6, 4, 447-472 (2016) · Zbl 1355.65081 · doi:10.3934/naco.2016020
[11] Campbell, S. L.; Betts, J. T., Comments on direct transcription solution of DAE constrained optimal control problems with two discretization approaches, Numerical Algorithms, 73, 3, 807-838 (2016) · Zbl 1353.65060 · doi:10.1007/s11075-016-0119-6
[12] Linh, V. H.; Truong, N. D., Runge-Kutta methods revisited for a class of structured strangeness-free differential-algebraic equations, Electronic transactions on numerical analysis ETNA, 48, 131-155 (2018) · Zbl 1448.65085 · doi:10.1553/etna_vol48s131
[13] Estévez Schwarz, D.; Lamour, R., Projected explicit and implicit Taylor series methods for DAEs, Numerical Algorithms, 88, 615-646 (2021) · Zbl 1487.65109 · doi:10.1007/s11075-020-01051-z
[14] Akinnukawe, B. I.; Akinfenwa, O. A.; Okunuga, S. A., Hybrid block algorithm for solving differential-algebraic equation with Hessenberg index 3, FUTA Journal of Research in Sciences, 15, 1, 32-39 (2019)
[15] Ghazwa, F. A.; Zaboon, R. A., Approximate solution of a reduced-type index-hessenberg differential-algebraic control system, Journal of Applied Mathematics, 2021 (2021) · Zbl 1499.65359 · doi:10.1155/2021/9706255
[16] Thota, S., On solving system of linear differential-algebraic equations using reduction algorithm, International Journal of Mathematics and Mathematical Sciences, 2020 (2020) · Zbl 1486.65089 · doi:10.1155/2020/6671926
[17] Thota, S., On Maple implementation of a reduction algorithm for differential-algebraic systems, Proceedings of the International Conference on Mathematical Advances and Applications 2020
[18] Golchian, M.; Gachpazan, M.; Tabasi, S. H., A new approach for computing the exact solutions of DAEs in generalized Hessenberg forms, International Journal of Nonlinear Analysis and Applications, 11, 1, 199-206 (2020) · Zbl 1513.65267
[19] Benhammouda, B., A novel technique to solve nonlinear higher-index Hessenberg differential-algebraic equations by Adomian decomposition method, Springer Plus, 5, 1, 1-14 (2016) · doi:10.1186/s40064-016-2208-3
[20] Yang, L.; Kai, S., Solving power system differential algebraic equations using the differential transformation, IEEE transaction on power, 35, 3 (2020) · doi:10.1109/TPWRS.2019.2945512
[21] Carmine, M. P.; Antonio, L.; Domenico, G., Stability analysis of rigid multibody mechanical systemswith holonomic and nonholonomic constraints, Archive of Applied Mechanics, 90, 1961-2005 (2020) · doi:10.1007/s00419-020-01706-2
[22] Baumgarte, J., Stabilization of constraints and integrals of motion in dynamical systems, Computational Methods in Applied Mechanics and Engineering, 1, 1-16 (1972) · Zbl 0262.70017 · doi:10.1016/0045-7825(72)90018-7
[23] Neto, M.; Ambrósio, J., Stabilization methods for the integration of DAE in the presence of redundant constraints, Multibody System Dynamics, 10, 81-105 (2003) · Zbl 1137.70303 · doi:10.1023/a:1024567523268
[24] Ascher, U.; Petzold, L., Stability of computational methods for constrained dynamics systems, SIAM Journal on Scientific Computing, 14, 95-120 (1993) · Zbl 0773.65044 · doi:10.1137/0914007
[25] Ascher, U.; Lin, P., Sequential regularization methods for nonlinear higher-index DAEs, SIAM Journal on Scientific Computing, 18, 1, 160-181 (1997) · Zbl 0949.65084 · doi:10.1137/s1064827595287778
[26] Benhammouda, B.; Vazquez-Leal, H., Analytical solution of a nonlinear index-three DAEs system modelling a slider-crank mechanism, Discrete Dynamics in Nature and Society, 2015 (2015) · Zbl 1418.70003 · doi:10.1155/2015/206473
[27] Benhammouda, B., Approximate analytical solution of index-2 DAEs arising from constrained multibody systems, Asian Research Journal of Mathematics, 8, 3, 1-15 (2018) · doi:10.9734/arjom/2018/38983
[28] Benhammouda, B., Solution of constrained mechanical multibody systems using Adomian decomposition method (2006), https://arxiv.org/abs/1605.09041
[29] Bayo, E.; Avello, A., Singularity-free augmented Lagrangian algorithms for constrained multibody dynamics, Nonlinear Dynamics, 5, 209-231 (1994)
[30] Coddington, E. A., An Introduction to Ordinary Differential Equations (1989), New York, NY, USA: Dover Publications, New York, NY, USA
[31] Kreyszig, E., Advanced Engineering Mathematics (1999), New York, NY, USA: Wiley & Sons, New York, NY, USA
[32] Filipich, C. P.; Rosales, M. B.; Buezas, F., Some nonlinear mechanical problems solved with analytical solutions, J. Latin American Appl. Research, 34, 101-109 (2004)
[33] Al Sakkaf, L.; Al Khawaja, U., High accuracy power series method for solving scalar, vector, and inhomogeneous nonlinear Schrödinger equations (2021), https://arxiv.org/abs/2108.13174
[34] Kurulay, M.; Bayram, M., A novel power series method for solving second order partial differential equations, European Journal Of Pure And Applied Mathematics, 2, 2, 268-277 (2009) · Zbl 1213.65140
[35] Nuseir, A. S.; Al-Hasson, A., Power series solution for nonlinear system of partial differential equations, Applied Mathematical Sciences, 6, 104, 5147-5159 (2012) · Zbl 1262.35076
[36] Khader, M. M.; Adel, M., “Approximate solutions for the nonlinear systems of algebraic equations using the power series method,” applications and applied mathematics, International Journal, 15, 2 (2020) · Zbl 1451.65178
[37] Srivastava1, H. M.; Area, I.; Nieto, J. J., Power-series solution of compartmental epidemiological models, MBE, 18, 4, 3274-3290 (2021) · Zbl 1471.92352 · doi:10.3934/mbe.2021163
[38] Rach, R., A new definition of the adomian polynomials, Kybernetes, 37, 910-955 (2008) · Zbl 1176.33023 · doi:10.1108/03684920810884342
[39] Rach, R., A convenient computational form for the adomian polynomials, Journal of Mathematical Analysis and Applications, 102, 415-419 (1984) · Zbl 0552.60061 · doi:10.1016/0022-247x(84)90181-1
[40] Wazwaz, A. M., A new algorithm for calculating adomian polynomials for nonlinear operators, Applied Mathematics and Computation, 111, 53-69 (2000) · Zbl 1028.65138 · doi:10.1016/s0096-3003(99)00063-6
[41] Duan, J. S., Recurrence triangle for adomian polynomials, Applied Mathematics and Computation, 216, 1235-1241 (2010) · Zbl 1190.65031 · doi:10.1016/j.amc.2010.02.015
[42] Duan, J. S., An efficient algorithm for the multivariable adomian polynomials, Applied Mathematics and Computation, 217, 2456-2467 (2010) · Zbl 1204.65022 · doi:10.1016/j.amc.2010.07.046
[43] Duan, J. S., Convenient analytic recurrence algorithms for the adomian polynomials, Applied Mathematics and Computation, 217, 6337-6348 (2011) · Zbl 1214.65064 · doi:10.1016/j.amc.2011.01.007
[44] Rach, R.; Adomian, G., Transformation of series, Applied Mathematics Letters, 4, 4, 69-7l (1991) · Zbl 0742.40004
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.