×

Sensitivity to the rheology and geometry of granular collapses by using the \(\mu(I)\) rheology. (English) Zbl 1519.76343

Summary: We introduce a numerical method for the 2D and 3D simulation of dense granular column collapses using the \(\mu(I)\) inertial rheology. A sensitivity analysis of column deformation to the \(\mu(I)\) model parameters is performed, showing that the inverse static friction parameter mostly controls the final deformation. Our computations show that the \(\mu(I)\) inertial rheology is able to predict the different regimes of relative spreading as a function of aspect ratio \(a\) previously observed experimentally: \(a^1, a^{ \simeq 0.66}\) and \(a^{ \simeq 0.5}\) scalings for, respectively, slumping for low aspect ratio, 2D and 3D spreading regimes for high aspect ratio. We show that the sublinear scalings for high aspect ratio spreadings are due to an extra dissipation at the impact of the falling granular column. Finally, we introduce the relative grain diameter as an additional dimensionless parameter that, for a fixed aspect ratio, increases the inertial number and then decreases the relative spreading.

MSC:

76T25 Granular flows
76M10 Finite element methods applied to problems in fluid mechanics
Full Text: DOI

References:

[1] Lajeunesse, E.; Mangeney-Castelnau, A.; Vilotte, J. P., Spreading of a granular mass on a horizontal plane, Phys Fluids, 16, 2371 (2004) · Zbl 1186.76304
[2] Lube, G.; Huppert, H. E.; Stephen, R.; Sparks, J.; Hallworth, M. A., Axisymmetric collapses of granular columns, J Fluid Mech, 508, 175-199 (2004) · Zbl 1065.76506
[3] Balmforth, N. J.; Kerswell, R. R., Granular collapse in two dimensions, J Fluid Mech, 538, 399-428 (2005) · Zbl 1108.76303
[4] Lube, G.; Huppert, H. E.; Sparks, R. S.J.; Freundt, A., Collapses of two-dimensional granular columns, Phys Rev, 72, 041301 (2005)
[5] Mangeney-Castelnau, A.; Bouchut, F.; Lajeunesse, E.; Aubertin, A.; Vilotte, J.; Pirulli, M., On the use of Saint-Venant equations for simulating the spreading of granular mass, J Geophys Res, 199, 177-215 (2004)
[6] Larrieu, E.; Staron, L.; Hinch, E. J., Raining into shallow water as a description of the collapse of a column of grains, J Fluid Mech, 554, 259-270 (2006) · Zbl 1090.76011
[7] Andreotti, B.; Forterre, Y.; Pouliquen, O., Granular media: from liquid to solid (2013), Cambridge University Press · Zbl 1388.76001
[8] Da Cruz, F.; Emam, S.; Prochnow, M., Rheophysics of dense granular materials: discrete simulation of plane shear flows, Phys Rev E, 72, 021309 (2005)
[9] Jop, P.; Pouliquen, O.; Forterre, Y., A constitutive law for dense granular flows, Nature, 441, 727-730 (2006)
[10] Lacaze, L.; Kerswell, R. R., Axisymmetric granular collapse: a transient 3D flow test of viscoplasticity, Phys Rev Letters, 102, 108305 (2009)
[11] Lagree, P.-Y.; Staron, L.; Popinet, S., The granular column collapse as a continuum : validity of a two-dimensional Navier-Stokes model with a \(μ(I)\) rheology, J Fluid Mech, 686, 1-31 (2011) · Zbl 1241.76413
[12] Ionescu, I. R.; Mangeney, A.; Bouchut, F.; Roche, O., Viscoplastic modeling of granular column collapse with pressure-dependent rheology, J Non-Newt Fluid Mech, 219, 1-18 (2015)
[13] Dunatunga, S.; Kamrin, K., Continuum modeling and simulation of granular flows through their many phases, J Fluid Mech, 779, 483-513 (2015) · Zbl 1360.76339
[14] Gesenhues, L.; Camata, J. J.; Coutinho, A. L.G. A., Simulation of a column collapse for dense granular flows (2017)
[15] Gesenhues, L.; Camata, J. J.; Côrtes, A. M.A.; Rochinha, F. A.; Coutinho, A. L.G. A., Finite element simulation of complex dense granular flows using a well-posed regularization of the \(μ(I)\)-rheology, Comput Fluids, 188, 102-113 (2019) · Zbl 1519.76339
[16] Chauchat, J.; Medale, M., A three-dimensional numerical model for dense granular flows based on the \(μ(I)\) rheology, J Comput Phys, 256, 696-712 (2013) · Zbl 1349.76867
[17] Lusso, C.; Ern, A.; Bouchut, F.; Mangeney, A.; Farin, M.; Roche, O., Two-dimensional simulation by regularization of free surface viscoplastic flows with Drucker-Parger yield stress and application to granular collapse, J of Comp Phys, 333, 387-408 (2017) · Zbl 1375.74020
[18] Riber, S.; Valette, R.; Mesri, Y.; Hachem, E., Adaptive variational multiscale method for bingham flows, Comput Fluids, 138, 51-60 (2016) · Zbl 1390.76352
[19] Hachem, E.; Rivaux, B.; Kloczko, T.; Digonnet, H.; Coupez, T., Stabilized finite element method for incompressible flows with high Reynolds number, J Comput Phys, 229, 8643-8665 (2010) · Zbl 1282.76120
[20] Coupez, T.; Hachem, E., Solution of high-Reynolds incompressible flow with stabilized finite element and adaptive anisotropic meshing, Comput Meth Appl Mech Engn, 267, 65-85 (2013) · Zbl 1286.76029
[21] Khalloufi, M.; Mesri, Y.; Valette, R.; Massoni, E.; Hachem, E., High fidelity anisotropic adaptive variational multiscale method for multiphase flows with surface tension, Comput Meth Appl Mech Engn, 307, 44-67 (2016) · Zbl 1436.76026
[22] Valette, R.; Hachem, E.; Khalloufi, M.; Pereira, A. S.; Mackley, M. R.; Butler, S. A., The effect of viscosity, yield stress, and surface tension on the deformation and breakup profiles of fluid filaments stretched at very high velocities, J Non-Newt Fluid Mech, 263, 130-139 (2019)
[23] Valette, R.; Riber, S.; Pereira, A. S.; Khalloufi, M.; Sardo, L.; Hachem, E., Adaptive finite element framework for simulating two and three-dimensional viscoplastic free surface flows, J Non-Newt Fluid Mech (2019), submitted
[24] MiDi, G., On dense granular flows, Eur Phys J E, 14, 341-365 (2004)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.