×

HHO methods for the incompressible Navier-Stokes and the incompressible Euler equations. (English) Zbl 1490.65189

Summary: We propose two Hybrid High-Order (HHO) methods for the incompressible Navier-Stokes equations and investigate their robustness with respect to the Reynolds number. While both methods rely on a HHO formulation of the viscous term, the pressure-velocity coupling is fundamentally different, up to the point that the two approaches can be considered antithetical. The first method is kinetic energy preserving, meaning that the skew-symmetric discretization of the convective term is guaranteed not to alter the kinetic energy balance. The approximated velocity fields exactly satisfy the divergence free constraint and continuity of the normal component of the velocity is weakly enforced on the mesh skeleton, leading to H-div conformity. The second scheme relies on Godunov fluxes for pressure-velocity coupling: a Harten, Lax and van Leer approximated Riemann Solver designed for cell centered formulations is adapted to hybrid face centered formulations. The resulting numerical scheme is robust up to the inviscid limit, meaning that it can be applied for seeking approximate solutions of the incompressible Euler equations. The schemes are numerically validated performing steady and unsteady two dimensional test cases and evaluating the convergence rates on \(h\)-refined mesh sequences. In addition to standard benchmark flow problems, specifically conceived test cases are conducted for studying the error behaviour when approaching the inviscid limit.

MSC:

65M60 Finite element, Rayleigh-Ritz and Galerkin methods for initial value and initial-boundary value problems involving PDEs
76B47 Vortex flows for incompressible inviscid fluids
76D05 Navier-Stokes equations for incompressible viscous fluids

References:

[1] Botti, M.; Di Pietro, DA; Sochala, P., A hybrid high-order method for nonlinear elasticity, SIAM J. Numer. Anal., 55, 6, 2687-2717 (2017) · Zbl 1459.65212 · doi:10.1137/16M1105943
[2] Abbas, M.; Ern, A.; Pignet, N., Hybrid high-order methods for finite deformations of hyperelastic materials, Comput. Mech., 62, 4, 909-928 (2018) · Zbl 1459.74020 · doi:10.1007/s00466-018-1538-0
[3] Aghili, J.; Boyaval, S.; Di Pietro, DA, Hybridization of mixed high-order methods on general meshes and application to the Stokes equations, Comput. Meth. Appl. Mat., 15, 2, 111-134 (2015) · Zbl 1311.76038 · doi:10.1515/cmam-2015-0004
[4] Di Pietro, D.A., Ern, A., Lemaire, S.: A review of Hybrid High-Order methods: formulations, computational aspects, comparison with other methods. Building bridges: Connections and challenges in modern approaches to numerical partial differential equations, vol. No 114 in Lecture Notes in Computational Science and Engineering. Springer, Cham (2016) doi:10.1007/978-3-319-41640-3
[5] Botti, L.; Di Pietro, DA; Droniou, J., A hybrid high-order discretisation of the Brinkman problem robust in the Darcy and Stokes limits, Comput. Methods Appl. Mech. Engrg., 341, 278-310 (2018) · Zbl 1440.76052 · doi:10.1016/j.cma.2018.07.004
[6] Botti, L., Botti, M., Di Pietro, D.A.: An abstract analysis framework for monolithic discretisations of poroelasticity with application to Hybrid High-Order methods. Comput. Math. Appl. 91, 150-175 (2021). Robust and Reliable Finite Element Methods in Poromechanics doi:10.1016/j.camwa.2020.06.004 · Zbl 1524.65517
[7] Botti, L., Botti, M., Di Pietro, D.A.: A Hybrid High-Order Method for Multiple-Network Poroelasticity, pp. 227-258. Springer, Cham (2021). doi:10.1007/978-3-030-69363-3_6 · Zbl 1470.76050
[8] Botti, L.; Di Pietro, DA, p-multilevel preconditioners for HHO discretizations of the stokes equations with static condensation, Commun. Appl. Math. Comput. (2021) · Zbl 1513.65053 · doi:10.1007/s42967-021-00142-5
[9] Badia, S., Droniou, J., Yemm, L.: Conditioning of a Hybrid High-Order scheme on meshes with small faces. arXiv preprint (2021)
[10] Cockburn, B.; Shu, C-W, The Runge-Kutta local projection \(P^1\)-discontinuous-Galerkin finite element method for scalar conservation laws, RAIRO Modél. Math. Anal. Numér., 25, 3, 337-361 (1991) · Zbl 0732.65094 · doi:10.1051/m2an/1991250303371
[11] Cockburn, B.; Shu, C-W, TVB Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws. II. General framework, Math. Comp., 52, 186, 411-435 (1989) · Zbl 0662.65083 · doi:10.2307/2008474
[12] Cockburn, B.; Lin, SY; Shu, C-W, TVB Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws. III. One-dimensional systems, J. Comput. Phys., 84, 1, 90-113 (1989) · Zbl 0677.65093 · doi:10.1016/0021-9991(89)90183-6
[13] Cockburn, B.; Hou, S.; Shu, C-W, The Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws. IV. The multidimensional case, Math. Comp., 54, 190, 545-581 (1990) · Zbl 0695.65066 · doi:10.2307/2008501
[14] Cockburn, B.; Shu, C-W, The Runge-Kutta discontinuous Galerkin method for conservation laws. V. Multidimensional systems, J. Comput. Phys., 141, 2, 199-224 (1998) · Zbl 0920.65059 · doi:10.1006/jcph.1998.5892
[15] Bassi, F.; Rebay, S., A high-order accurate discontinuous finite element method for the numerical solution of the compressible Navier-Stokes equations, J. Comput. Phys., 131, 2, 267-279 (1997) · Zbl 0871.76040 · doi:10.1006/jcph.1996.5572
[16] Bassi, F., Rebay, S., Mariotti, G., Pedinotti, S., Savini, M.: A high-order accurate discontinuous finite element method for inviscid and viscous turbomachinery flows. In: Decuypere, R., Dibelius, G. (eds.) Proceedings of the 2nd European Conference on Turbomachinery Fluid Dynamics and Thermodynamics, pp. 99-109 (1997)
[17] Cockburn, B.; Kanschat, G.; Schötzau, D.; Schwab, C., Local discontinuous galerkin methods for the stokes system, SIAM J. Numer. Anal., 40, 1, 319-343 (2002) · Zbl 1032.65127 · doi:10.1137/S0036142900380121
[18] Bassi, F.; Crivellini, A.; Di Pietro, DA; Rebay, S., An artificial compressibility flux for the discontinuous Galerkin solution of the incompressible Navier-Stokes equations, J. Comput. Phys., 218, 2, 794-815 (2006) · Zbl 1158.76313 · doi:10.1016/j.jcp.2006.03.006
[19] Chorin, AJ, A numerical method for solving incompressible viscous flow problems, J. Comput. Phys., 2, 1, 12-26 (1967) · Zbl 0149.44802 · doi:10.1016/0021-9991(67)90037-X
[20] Shahbazi, K.; Fischer, PF; Ethier, CR, A high-order discontinuous Galerkin method for the unsteady incompressible Navier-Stokes equations, J. Comput. Phys., 222, 1, 391-407 (2007) · Zbl 1216.76034 · doi:10.1016/j.jcp.2006.07.029
[21] Botti, L.; Di Pietro, DA, A pressure-correction scheme for convection-dominated incompressible flows with discontinuous velocity and continuous pressure, J. Comput. Phys., 230, 3, 572-585 (2011) · Zbl 1283.76030 · doi:10.1016/j.jcp.2010.10.004
[22] Busto, S.; Ferrín, JL; Toro, EF; Vázquez-Cendón, ME, A projection hybrid high order finite volume/finite element method for incompressible turbulent flows, J. Comput. Phys., 353, 169-192 (2018) · Zbl 1380.76052 · doi:10.1016/j.jcp.2017.10.004
[23] Di Pietro, DA; Ern, A., Discrete functional analysis tools for discontinuous Galerkin methods with application to the incompressible Navier-Stokes equations, Math. Comp., 79, 271, 1303-1330 (2010) · Zbl 1369.76024 · doi:10.1090/S0025-5718-10-02333-1
[24] Di Pietro, D.A., Ern, A.: Mathematical Aspects of Discontinuous Galerkin Methods. Mathématiques & Applications (Berlin) [Mathematics & Applications], vol. 69, p. 384. Springer, Heidelberg (2012). doi:10.1007/978-3-642-22980-0 · Zbl 1231.65209
[25] Bassi, F.; Botti, L.; Colombo, A.; Di Pietro, DA; Tesini, P., On the flexibility of agglomeration based physical space discontinuous Galerkin discretizations, J. Comput. Phys., 231, 1, 45-65 (2012) · Zbl 1457.65178 · doi:10.1016/j.jcp.2011.08.018
[26] Bassi, F.; Botti, L.; Colombo, A.; Rebay, S., Agglomeration based discontinuous Galerkin discretization of the Euler and Navier-Stokes equations, Comput. Fluids, 61, 77-85 (2012) · Zbl 1365.76109 · doi:10.1016/j.compfluid.2011.11.002
[27] Bassi, F.; Botti, L.; Colombo, A., Agglomeration-based physical frame dG discretizations: an attempt to be mesh free, Math. Models Methods Appl. Sci., 24, 8, 1495-1539 (2014) · Zbl 1291.65335 · doi:10.1142/S0218202514400028
[28] Antonietti, PF; Giani, S.; Houston, P., \(hp\)-version composite discontinuous Galerkin methods for elliptic problems on complicated domains, SIAM J. Sci. Comput., 35, 3, 1417-1439 (2013) · Zbl 1284.65163 · doi:10.1137/120877246
[29] Antonietti, P.F., Cangiani, A., Collis, J., Dong, Z., Georgoulis, E.H., Giani, S., Houston, P.: Review of discontinuous Galerkin finite element methods for partial differential equations on complicated domains. In: Building Bridges: Connections and Challenges in Modern Approaches to Numerical Partial Differential Equations. Lect. Notes Comput. Sci. Eng., vol. 114, pp. 279-308. Springer, Cham (2016) · Zbl 1357.65251
[30] Cangiani, A., Dong, Z., Georgoulis, E.H., Houston, P.: \(hp\)-version Discontinuous Galerkin Methods on Polygonal and Polyhedral Meshes. SpringerBriefs in Mathematics, p. 131. Springer, Cham (2017) · Zbl 1382.65307
[31] Tavelli, M.; Dumbser, M., A staggered space-time discontinuous Galerkin method for the three-dimensional incompressible Navier-Stokes equations on unstructured tetrahedral meshes, J. Comput. Phys., 319, 294-323 (2016) · Zbl 1349.76271 · doi:10.1016/j.jcp.2016.05.009
[32] Tavelli, M.; Dumbser, M., A pressure-based semi-implicit space-time discontinuous Galerkin method on staggered unstructured meshes for the solution of the compressible Navier-Stokes equations at all Mach numbers, J. Comput. Phys., 341, 341-376 (2017) · Zbl 1376.76028 · doi:10.1016/j.jcp.2017.03.030
[33] Dumbser, M.; Fambri, F.; Furci, I.; Mazza, M.; Serra-Capizzano, S.; Tavelli, M., Staggered discontinuous Galerkin methods for the incompressible Navier-Stokes equations: Spectral analysis and computational results, Numer. Linear Algebr., 25, 5, 2687-2717 (2018) · Zbl 1513.65356 · doi:10.1002/nla.2151
[34] Manzanero, J.; Rubio, G.; Kopriva, DA; Ferrer, E.; Valero, E., An entropy-stable discontinuous Galerkin approximation for the incompressible Navier-Stokes equations with variable density and artificial compressibility, J. Comput. Phys., 408 (2020) · Zbl 07505602 · doi:10.1016/j.jcp.2020.109241
[35] Nguyen, NC; Peraire, J.; Cockburn, B., An implicit high-order hybridizable discontinuous Galerkin method for the incompressible Navier-Stokes equations, J. Comput. Phys., 230, 4, 1147-1170 (2011) · Zbl 1391.76353 · doi:10.1016/j.jcp.2010.10.032
[36] Cesmelioglu, A.; Cockburn, B.; Qiu, W., Analysis of a hybridizable discontinuous Galerkin method for the steady-state incompressible Navier-Stokes equations, Math. Comput., 86, 306, 1643-1670 (2017) · Zbl 1422.65377 · doi:10.1090/mcom/3195
[37] Labeur, RJ; Wells, GN, Energy Stable and Momentum Conserving Hybrid Finite Element Method for the Incompressible Navier-Stokes Equations, SIAM J. Sci. Comput., 34, 2, 889-913 (2012) · Zbl 1391.76344 · doi:10.1137/100818583
[38] Qiu, W.; Shi, K., A superconvergent HDG method for the incompressible Navier-Stokes equations on general polyhedral meshes, IMA J. Numer. Anal., 36, 4, 1943-1967 (2016) · Zbl 1433.76090 · doi:10.1093/imanum/drv067
[39] Rhebergen, S.; Wells, GN, A hybridizable discontinuous Galerkin method for the Navier-Stokes equations with pointwise divergence-free velocity field, J. Sci. Comput., 76, 3, 1484-1501 (2018) · Zbl 1397.76077 · doi:10.1007/s10915-018-0671-4
[40] Kirk, KLA; Rhebergen, S., Analysis of a pressure-robust hybridized discontinuous galerkin method for the stationary navier-stokes equations, J. Sci. Comput., 81, 2, 881-897 (2019) · Zbl 1423.76247 · doi:10.1007/s10915-019-01040-y
[41] Di Pietro, D.A., Krell, S.: Benchmark session: The 2D Hybrid High-Order method. In: Cancès, C., Omnes, P. (eds.) Finite Volumes for Complex Applications VIII - Methods and Theoretical Aspects, pp. 91-106 (2017) · Zbl 1391.76400
[42] Di Pietro, DA; Krell, S., A hybrid high-order method for the steady incompressible navier-stokes problem, J. Sci. Comput., 74, 3, 1677-1705 (2018) · Zbl 1384.76037 · doi:10.1007/s10915-017-0512-x
[43] Botti, L.; Di Pietro, DA; Droniou, J., A hybrid high-order method for the incompressible navier-stokes equations based on temam’s device, J. Comput. Phys., 376, 786-816 (2019) · Zbl 1416.76205 · doi:10.1016/j.jcp.2018.10.014
[44] Di Pietro, D.A., Droniou, J.: The Hybrid High-Order Method for Polytopal meshes. Modeling, Simulation and Application, vol. 19. Springer, Cham (2020). doi:10.1007/978-3-030-37203-3 · Zbl 07183616
[45] Castanon Quiroz, D.; Di Pietro, DA, A hybrid high-order method for the incompressible navier-stokes problem robust for large irrotational body forces, Comput. Math. Appl., 79, 9, 2655-2677 (2020) · Zbl 1437.65178 · doi:10.1016/j.camwa.2019.12.005
[46] Botti, Michele, Castanon Quiroz, Daniel, Di Pietro, Daniele A., Harnist, André: A hybrid high-order method for creeping flows of non-Newtonian fluids. ESAIM: M2AN 55(5), 2045-2073 (2021). doi:10.1051/m2an/2021051 · Zbl 1489.65154
[47] Cockburn, B.; Di Pietro, DA; Ern, A., Bridging the hybrid high-order and hybridizable discontinuous galerkin methods, ESAIM: M2AN, 50, 3, 635-650 (2016) · Zbl 1341.65045 · doi:10.1051/m2an/2015051
[48] Elsworth, D.T., Toro, E.F.: Riemann solvers for solving the incompressible Navier-Stokes equations using the artificial compressibility method. Technical Report 9208, College of Aeronautics, Cranfield Institute of Technology (1992). https://dspace.lib.cranfield.ac.uk/handle/1826/240
[49] Bassi, F.; Massa, F.; Botti, L.; Colombo, A., Artificial compressibility godunov fluxes for variable density incompressible flows, Comput. Fluids, 169, 186-200 (2018) · Zbl 1410.76155 · doi:10.1016/j.compfluid.2017.09.010
[50] Massa, FC; Ostrowski, L.; Bassi, F.; Rohde, C., An artificial Equation of State based Riemann solver for a discontinuous Galerkin discretization of the incompressible Navier-Stokes equations, J. Comput. Phys., 448 (2022) · Zbl 1537.76075 · doi:10.1016/j.jcp.2021.110705
[51] Vila-Pérez, J.; Giacomini, M.; Sevilla, R.; Huerta, A., Hybridisable discontinuous galerkin formulation of compressible flows, Arch. Comput. Method E., 28, 2, 753-784 (2021) · doi:10.1007/s11831-020-09508-z
[52] Di Pietro, DA; Ern, A.; Lemaire, S., An arbitrary-order and compact-stencil discretization of diffusion on general meshes based on local reconstruction operators, Comput. Meth. Appl. Mat., 14, 4, 461-472 (2014) · Zbl 1304.65248 · doi:10.1515/cmam-2014-0018
[53] Toro, E.F.: Riemann Solvers and Numerical Methods for Fluid Dynamics. Springer, Heidelberg. (2009). doi:10.1007/b79761 · Zbl 1227.76006
[54] Botti, L., Influence of reference-to-physical frame mappings on approximation properties of discontinuous piecewise polynomial spaces, J. Sci. Comput., 52, 3, 675-703 (2012) · Zbl 1255.65222 · doi:10.1007/s10915-011-9566-3
[55] Botti, L.; Di Pietro, DA, Numerical assessment of Hybrid High-Order methods on curved meshes and comparison with discontinuous Galerkin methods, J. Comput. Phys., 370, 58-84 (2018) · Zbl 1398.65328 · doi:10.1016/j.jcp.2018.05.017
[56] Kelley, CT; Keyes, DE, Convergence analysis of pseudo-transient continuation, SIAM J. Numer. Anal., 35, 2, 508-523 (1998) · Zbl 0911.65080 · doi:10.1137/S0036142996304796
[57] Brown, PN; Saad, Y., Convergence theory of nonlinear newton-krylov algorithms, SIAM J. Optimiz., 4, 2, 297-330 (1994) · Zbl 0814.65048 · doi:10.1137/0804017
[58] Kovasznay, LIG, Laminar flow behind a two-dimensional grid, Math. Proc. Cambridge, 44, 1, 58-62 (1948) · Zbl 0030.22902 · doi:10.1017/S0305004100023999
[59] Lederer, PL; Linke, A.; Merdon, C.; Schöberl, J., Divergence-free reconstruction operators for pressure-robust stokes discretizations with continuous pressure finite elements, SIAM J. Numer. Anal., 55, 3, 1291-1314 (2017) · Zbl 1457.65202 · doi:10.1137/16M1089964
[60] Hirsch, C.: Numerical Computation of Internal and External Flows, Volume 2: Computational Methods for Inviscid and Viscous Flows. Wiley Series in Numerical Methods in Engineering. Wiley, England (1990) · Zbl 0742.76001
[61] Gresho, PM; Chan, ST, On the theory of semi-implicit projection methods for viscous incompressible flow and its implementation via a finite element method that also introduces a nearly consistent mass matrix. Part: 2 Implementation, Int. J. Numer. Meth. Fl., 11, 5, 621-659 (1990) · Zbl 0712.76036 · doi:10.1002/fld.1650110510
[62] Gauger, NR; Linke, A.; Schroeder, PW, On high-order pressure-robust space discretisations, their advantages for incompressible high Reynolds number generalised Beltrami flows and beyond, SMAI-JCM, 5, 89-129 (2019) · Zbl 1422.76125 · doi:10.5802/smai-jcm.44
[63] Curtiss, CF; Hirschfelder, JO, Integration of Stiff Equations, PNAS, 38, 3, 235-243 (1952) · Zbl 0046.13602 · doi:10.1073/pnas.38.3.235
[64] Bell, JB; Colella, P.; Glaz, HM, A second-order projection method for the incompressible navier-stokes equations, J. Comput. Phys., 85, 257-283 (1989) · Zbl 0681.76030 · doi:10.1007/s10494-018-0005-5
[65] Erturk, E.; Corke, TC; Gökçöl, C., Numerical solutions of 2-D steady incompressible driven cavity flow at high Reynolds, Int. J. Numer. Meth. Fl., 48, 747-774 (2005) · Zbl 1071.76038 · doi:10.1002/fld.953
[66] Ghia, U.; Ghia, KN; Shin, CT, High-re solutions for incompressible flow using the navier-stokes equations and a multigrid method, J. Comput. Phys., 48, 387-411 (1982) · Zbl 0511.76031 · doi:10.1016/0021-9991(82)90058-4
[67] Botti, L.; Pietro, DAD, p-multilevel preconditioners for HHO discretizations of the stokes equations with static condensation, Commun. Appl. Math. Comput. (2021) · Zbl 1513.65053 · doi:10.1007/s42967-021-00142-5
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.