×

Cosmology as a \(\mathrm{CFT}_1\). (English) Zbl 1431.83182

Summary: We show that the simplest FLRW cosmological system consisting in the homogeneous and isotropic massless Einstein-scalar system enjoys a hidden conformal symmetry under the 1D conformal group \(\mathrm{SL} (2, \mathbb{R})\) acting as Möbius transformations in proper time. This invariance is made explicit through the mapping of FLRW cosmology onto conformal mechanics. On the one hand, we identify the corresponding conformal Noether charges, as combinations of the Hamiltonian scalar constraint, the extrinsic curvature and the 3D volume, which form a closed \(\mathfrak{s} \mathfrak{l} (2, \mathbb{R})\) Lie algebra. On the other hand, this approach allows to write FLRW cosmology in terms of a \(\mathrm{AdS}_2\) phase space and a Schwarzian action. Preserving this conformal structure at the quantum level fixes the ordering ambiguities in the Wheeler-de Witt quantization and allows to formulate FLRW quantum cosmology as a \(\mathrm{CFT}_1\). We show that the CFT two-points correlator is realized as the overlap of the evolution in proper time of cosmological coherent wave-packets. In particular, the two-points function is built from a vacuum state which, although not conformally invariant, coincides with the cosmological vacuum annihilated by the scalar constraint. These results suggest new perspectives in classical and quantum cosmology, among which the possibility to apply the conformal bootstrap program to quantize cosmological backgrounds.

MSC:

83F05 Relativistic cosmology
81T40 Two-dimensional field theories, conformal field theories, etc. in quantum mechanics
83C20 Classes of solutions; algebraically special solutions, metrics with symmetries for problems in general relativity and gravitational theory
83C45 Quantization of the gravitational field
81R05 Finite-dimensional groups and algebras motivated by physics and their representations

References:

[1] J.D. Bekenstein, Black holes and entropy, Phys. Rev.D 7 (1973) 2333 [INSPIRE]. · Zbl 1369.83037
[2] Bardeen, Jm; Carter, B.; Hawking, Sw, The four laws of black hole mechanics, Commun. Math. Phys., 31, 161 (1973) · Zbl 1125.83309 · doi:10.1007/BF01645742
[3] Hawking, Sw, Black hole explosions, Nature, 248, 30 (1974) · Zbl 1370.83053 · doi:10.1038/248030a0
[4] T. Jacobson, Thermodynamics of space-time: the Einstein equation of state, Phys. Rev. Lett.75 (1995) 1260 [gr-qc/9504004] [INSPIRE]. · Zbl 1020.83609
[5] G.W. Gibbons and S.W. Hawking, Cosmological event horizons, thermodynamics and particle creation, Phys. Rev.D 15 (1977) 2738 [INSPIRE].
[6] Frolov, Av; Kofman, L., Inflation and de Sitter thermodynamics, JCAP, 05, 009 (2003) · Zbl 1027.83534 · doi:10.1088/1475-7516/2003/05/009
[7] T.M. Davis, P.C.W. Davies and C.H. Lineweaver, Black hole versus cosmological horizon entropy, Class. Quant. Grav.20 (2003) 2753 [astro-ph/0305121] [INSPIRE]. · Zbl 1134.83319
[8] Cai, R-G; Kim, Sp, First law of thermodynamics and Friedmann equations of Friedmann-Robertson-Walker universe, JHEP, 02, 050 (2005) · doi:10.1088/1126-6708/2005/02/050
[9] M. Akbar and R.-G. Cai, Thermodynamic behavior of Friedmann equations at apparent horizon of FRW universe, Phys. Rev.D 75 (2007) 084003 [hep-th/0609128] [INSPIRE].
[10] Cai, R-G; Cao, L-M; Hu, Y-P, Hawking radiation of apparent horizon in a FRW universe, Class. Quant. Grav., 26, 155018 (2009) · Zbl 1172.83347 · doi:10.1088/0264-9381/26/15/155018
[11] Carlip, S., Black hole entropy from conformal field theory in any dimension, Phys. Rev. Lett., 82, 2828 (1999) · Zbl 0949.83043 · doi:10.1103/PhysRevLett.82.2828
[12] S. Carlip, Entropy from conformal field theory at Killing horizons, Class. Quant. Grav.16 (1999) 3327 [gr-qc/9906126] [INSPIRE]. · Zbl 0935.83023
[13] S. Carlip, Near horizon conformal symmetry and black hole entropy, Phys. Rev. Lett.88 (2002) 241301 [gr-qc/0203001] [INSPIRE].
[14] Carlip, S., Effective conformal descriptions of black hole entropy, Entropy, 13, 1355 (2011) · Zbl 1296.83034 · doi:10.3390/e13071355
[15] Carlip, S., Effective conformal descriptions of black hole entropy: a review, AIP Conf. Proc., 1483, 54 (2012) · doi:10.1063/1.4756962
[16] J.M. Bardeen and G.T. Horowitz, The extreme Kerr throat geometry: a vacuum analog of AdS_2× S^2 , Phys. Rev.D 60 (1999) 104030 [hep-th/9905099] [INSPIRE].
[17] Kunduri, Hk; Lucietti, J.; Reall, Hs, Near-horizon symmetries of extremal black holes, Class. Quant. Grav., 24, 4169 (2007) · Zbl 1205.83047 · doi:10.1088/0264-9381/24/16/012
[18] Kunduri, Hk; Lucietti, J., Classification of near-horizon geometries of extremal black holes, Living Rev. Rel., 16, 8 (2013) · Zbl 1320.83005 · doi:10.12942/lrr-2013-8
[19] Hajian, K.; Seraj, A.; Sheikh-Jabbari, Mm, NHEG mechanics: laws of near horizon extremal geometry (thermo)dynamics, JHEP, 03, 014 (2014) · doi:10.1007/JHEP03(2014)014
[20] G. Comp̀ere, K. Hajian, A. Seraj and M.M. Sheikh-Jabbari, Extremal rotating black holes in the near-horizon limit: phase space and symmetry algebra, Phys. Lett.B 749 (2015) 443 [arXiv:1503.07861] [INSPIRE]. · Zbl 1364.83019
[21] J.M. Maldacena and A. Strominger, Universal low-energy dynamics for rotating black holes, Phys. Rev.D 56 (1997) 4975 [hep-th/9702015] [INSPIRE].
[22] Bredberg, I.; Hartman, T.; Song, W.; Strominger, A., Black hole superradiance from Kerr/CFT, JHEP, 04, 019 (2010) · Zbl 1272.83041 · doi:10.1007/JHEP04(2010)019
[23] Birmingham, D.; Sachs, I.; Solodukhin, Sn, Conformal field theory interpretation of black hole quasinormal modes, Phys. Rev. Lett., 88, 151301 (2002) · doi:10.1103/PhysRevLett.88.151301
[24] B. Chen and J.-j. Zhang, Quasi-normal modes of extremal black holes from hidden conformal symmetry, Phys. Lett.B 699 (2011) 204 [arXiv:1012.2219] [INSPIRE].
[25] B. Chen and J. Long, Hidden conformal symmetry and quasi-normal modes, Phys. Rev.D 82 (2010) 126013 [arXiv:1009.1010] [INSPIRE].
[26] A. Castro, A. Maloney and A. Strominger, Hidden conformal symmetry of the Kerr black hole, Phys. Rev.D 82 (2010) 024008 [arXiv:1004.0996] [INSPIRE].
[27] S. Bertini, S.L. Cacciatori and D. Klemm, Conformal structure of the Schwarzschild black hole, Phys. Rev.D 85 (2012) 064018 [arXiv:1106.0999] [INSPIRE].
[28] D.A. Lowe and A. Skanata, Generalized hidden Kerr/CFT, J. Phys.A 45 (2012) 475401 [arXiv:1112.1431] [INSPIRE]. · Zbl 1258.81077
[29] A.P. Porfyriadis and A. Strominger, Gravity waves from the Kerr/CFT correspondence, Phys. Rev.D 90 (2014) 044038 [arXiv:1401.3746] [INSPIRE].
[30] Pathak, A.; Porfyriadis, Ap; Strominger, A.; Varela, O., Logarithmic corrections to black hole entropy from Kerr/CFT, JHEP, 04, 090 (2017) · Zbl 1378.83045 · doi:10.1007/JHEP04(2017)090
[31] M. Guica, T. Hartman, W. Song and A. Strominger, The Kerr/CFT correspondence, Phys. Rev.D 80 (2009) 124008 [arXiv:0809.4266] [INSPIRE].
[32] Bredberg, I.; Keeler, C.; Lysov, V.; Strominger, A., Cargese lectures on the Kerr/CFT correspondence, Nucl. Phys. Proc. Suppl., 216, 194 (2011) · doi:10.1016/j.nuclphysbps.2011.04.155
[33] G. Comp̀ere, The Kerr/CFT correspondence and its extensions, Living Rev. Rel.15 (2012) 11 [arXiv:1203.3561] [INSPIRE]. · Zbl 1320.83001
[34] Anninos, D.; Hartnoll, Sa; Hofman, Dm, Static patch solipsism: conformal symmetry of the de Sitter worldline, Class. Quant. Grav., 29, 075002 (2012) · Zbl 1253.83014 · doi:10.1088/0264-9381/29/7/075002
[35] A. Kehagias and A. Riotto, Conformal symmetries of FRW accelerating cosmologies, Nucl. Phys.B 884 (2014) 547 [arXiv:1309.3671] [INSPIRE]. · Zbl 1323.83009
[36] A. Kehagias and A. Riotto, Operator product expansion of inflationary correlators and conformal symmetry of de Sitter, Nucl. Phys.B 864 (2012) 492 [arXiv:1205.1523] [INSPIRE]. · Zbl 1262.83065
[37] Kehagias, A.; Riotto, A., High energy physics signatures from inflation and conformal symmetry of de Sitter, Fortsch. Phys., 63, 531 (2015) · Zbl 1338.83216 · doi:10.1002/prop.201500025
[38] Kehagias, A.; Riotto, A., Inflation and conformal invariance: the perspective from radial quantization, Fortsch. Phys., 65, 1700023 (2017) · Zbl 1371.83209 · doi:10.1002/prop.201700023
[39] D. Baumann et al., The cosmological bootstrap: weight-shifting operators and scalar seeds, arXiv:1910.14051 [INSPIRE].
[40] N. Arkani-Hamed, D. Baumann, H. Lee and G.L. Pimentel, The cosmological bootstrap: inflationary correlators from symmetries and singularities, arXiv:1811.00024 [INSPIRE]. · Zbl 1436.85001
[41] Strominger, A., The dS/CFT correspondence, JHEP, 10, 034 (2001) · doi:10.1088/1126-6708/2001/10/034
[42] Dyson, L.; Lindesay, J.; Susskind, L., Is there really a de Sitter/CFT duality?, JHEP, 08, 045 (2002) · Zbl 1226.83030 · doi:10.1088/1126-6708/2002/08/045
[43] Anninos, D.; Hartman, T.; Strominger, A., Higher spin realization of the dS/CFT correspondence, Class. Quant. Grav., 34, 015009 (2017) · Zbl 1354.83043 · doi:10.1088/1361-6382/34/1/015009
[44] G. Comp̀ere, L. Donnay, P.-H. Lambert and W. Schulgin, Liouville theory beyond the cosmological horizon, JHEP03 (2015) 158 [arXiv:1411.7873] [INSPIRE]. · Zbl 1388.83010
[45] Neiman, Y., Towards causal patch physics in dS/CFT, EPJ Web Conf., 168, 01007 (2018) · doi:10.1051/epjconf/201816801007
[46] Donnay, L.; Giribet, G., Cosmological horizons, Noether charges and entropy, Class. Quant. Grav., 36, 165005 (2019) · Zbl 1477.83049 · doi:10.1088/1361-6382/ab2e42
[47] D. Grumiller et al., Spacetime structure near generic horizons and soft hair, arXiv:1908.09833 [INSPIRE].
[48] J.B. Hartle and S.W. Hawking, Wave function of the universe, Phys. Rev.D 28 (1983) 2960 [INSPIRE]. · Zbl 1370.83118
[49] A. Vilenkin, Creation of universes from nothing, Phys. Lett.B 117 (1982) 25.
[50] J. Feldbrugge, J.-L. Lehners and N. Turok, Lorentzian quantum cosmology, Phys. Rev.D 95 (2017) 103508 [arXiv:1703.02076] [INSPIRE].
[51] A. Vilenkin and M. Yamada, Tunneling wave function of the universe, Phys. Rev.D 98 (2018) 066003 [arXiv:1808.02032] [INSPIRE].
[52] Bojowald, M., Quantum cosmology: a review, Rept. Prog. Phys., 78, 023901 (2015) · doi:10.1088/0034-4885/78/2/023901
[53] Bojowald, M., Quantum cosmology: effective theory, Class. Quant. Grav., 29, 213001 (2012) · Zbl 1266.83001 · doi:10.1088/0264-9381/29/21/213001
[54] M. Bojowald, C. Kiefer and P. Vargas Moniz, Quantum cosmology for the 21^stcentury: a debate, in the proceedings of the 12^thMarcel Grossmann Meeting on General Relativity, July 12-18, Paris, France (2009), arXiv:1005.2471 [INSPIRE].
[55] J.J. Halliwell, The Interpretation of quantum cosmology and the problem of time, in the proceedings of The future of theoretical physics and cosmology: Celebrating Stephen Hawking’s 60^thbirthday. Proceedings, Workshop and Symposium, January 7-10, Cambridge, U.K. (2002), gr-qc/0208018 [INSPIRE].
[56] A. Vilenkin, Predictions from quantum cosmology, Phys. Rev. Lett.74 (1995) 846 [gr-qc/9406010] [INSPIRE].
[57] J.B. Hartle, Quantum cosmology: problems for the 21^stcentury, in the proceedings of the Physics in the 21^stcentury: 11^thNishinomiya-Yukawa Memorial Symposium, November 7-8, Nishinomiya, Japan (1996), gr-qc/9701022 [INSPIRE].
[58] Ben Achour, J.; Livine, Er, Protected SL(2, ℝ) symmetry in quantum cosmology, JCAP, 09, 012 (2019) · Zbl 1541.83008 · doi:10.1088/1475-7516/2019/09/012
[59] J. Ben Achour and E.R. Livine, Polymer quantum cosmology: lifting quantization ambiguities using a SL(2, R) conformal symmetry, Phys. Rev.D 99 (2019) 126013 [arXiv:1806.09290] [INSPIRE].
[60] J. Ben Achour and E.R. Livine, Thiemann complexifier in classical and quantum FLRW cosmology, Phys. Rev.D 96 (2017) 066025 [arXiv:1705.03772] [INSPIRE].
[61] N. Bodendorfer and D. Wuhrer, Renormalisation with SU(1, 1) coherent states on the LQC Hilbert space, arXiv:1904.13269 [INSPIRE]. · Zbl 1479.83074
[62] N. Bodendorfer and F. Haneder, Coarse graining as a representation change, Phys. Lett.B 792 (2019) 69 [arXiv:1811.02792] [INSPIRE]. · Zbl 1416.81088
[63] E.R. Livine and M. Martin-Benito, Group theoretical quantization of isotropic loop cosmology, Phys. Rev.D 85 (2012) 124052 [arXiv:1204.0539] [INSPIRE].
[64] M. Bojowald, Dynamical coherent states and physical solutions of quantum cosmological bounces, Phys. Rev.D 75 (2007) 123512 [gr-qc/0703144] [INSPIRE].
[65] V. de Alfaro, S. Fubini and G. Furlan, Conformal invariance in quantum mechanics, Nuovo Cim.A 34 (1976) 569 [INSPIRE]. · Zbl 0449.22024
[66] K. Andrzejewski and J. Gonera, On the geometry of conformal mechanics, arXiv:1108.1299 [INSPIRE]. · Zbl 1309.81105
[67] K. Andrzejewski, Quantum conformal mechanics emerging from unitary representations of SL(2, ℝ), Annals Phys.367 (2016) 227 [arXiv:1506.05596] [INSPIRE]. · Zbl 1378.81101
[68] T. Okazaki, Implications of conformal symmetry in quantum mechanics, Phys. Rev.D 96 (2017) 066030 [arXiv:1704.00286] [INSPIRE].
[69] M. Cadoni, P. Carta and S. Mignemi, A realization of the infinite-dimensional symmetries of conformal mechanics, Phys. Rev.D 62 (2000) 086002 [hep-th/0004107] [INSPIRE]. · Zbl 0995.83080
[70] S. Khodaee and D. Vassilevich, Note on correlation functions in conformal quantum mechanics, Mod. Phys. Lett.A 32 (2017) 1750157 [arXiv:1706.10225] [INSPIRE]. · Zbl 1375.81214
[71] J.F. Cariñena, L. Inzunza and M.S. Plyushchay, Rational deformations of conformal mechanics, Phys. Rev.D 98 (2018) 026017 [arXiv:1707.07357] [INSPIRE].
[72] S. Mignemi, Black holes and conformal mechanics, Mod. Phys. Lett.A 16 (2001) 1997 [hep-th/0104175] [INSPIRE]. · Zbl 1138.83336
[73] H.E. Camblong and C.R. Ordonez, Anomaly in conformal quantum mechanics: From molecular physics to black holes, Phys. Rev.D 68 (2003) 125013 [hep-th/0303166] [INSPIRE].
[74] G. Clement and D. Gal’tsov, Conformal mechanics on rotating Bertotti-Robinson space-time, Nucl. Phys.B 619 (2001) 741 [hep-th/0105237] [INSPIRE]. · Zbl 1066.83525
[75] Gaiotto, D.; Strominger, A.; Yin, X., Superconformal black hole quantum mechanics, JHEP, 11, 017 (2005) · doi:10.1088/1126-6708/2005/11/017
[76] H.E. Camblong and C.R. Ordonez, Black hole thermodynamics from near-horizon conformal quantum mechanics, Phys. Rev.D 71 (2005) 104029 [hep-th/0411008] [INSPIRE].
[77] Strominger, A., A matrix model for AdS_2, JHEP, 03, 066 (2004) · doi:10.1088/1126-6708/2004/03/066
[78] Spradlin, M.; Strominger, A., Vacuum states for AdS2 black holes, JHEP, 11, 021 (1999) · Zbl 0955.83016 · doi:10.1088/1126-6708/1999/11/021
[79] T. Azeyanagi, T. Nishioka and T. Takayanagi, Near extremal black hole entropy as entanglement entropy via AdS2 /C F T1 , Phys. Rev.D 77 (2008) 064005 [arXiv:0710.2956] [INSPIRE].
[80] Hartman, T.; Strominger, A., Central charge for AdS2 quantum gravity, JHEP, 04, 026 (2009) · doi:10.1088/1126-6708/2009/04/026
[81] C. Chamon, R. Jackiw, S.-Y. Pi and L. Santos, Conformal quantum mechanics as the CFT_1dual to AdS_2 , Phys. Lett.B 701 (2011) 503 [arXiv:1106.0726] [INSPIRE].
[82] Axenides, M.; Floratos, Eg; Nicolis, S., Modular discretization of the AdS_2/CFT_1holography, JHEP, 02, 109 (2014) · doi:10.1007/JHEP02(2014)109
[83] A. Pinzul and A. Stern, Non-commutative AdS_2/CFT_1duality: the case of massless scalar fields, Phys. Rev.D 96 (2017) 066019 [arXiv:1707.04816] [INSPIRE].
[84] M. Mezei, S.S. Pufu and Y. Wang, A 2d/1d holographic duality, arXiv:1703.08749 [INSPIRE].
[85] K.S. Gupta, E. Harikumar and N.S. Zuhair, Conformal quantum mechanics and holography in noncommutative space-time, Phys. Lett.B 772 (2017) 808 [arXiv:1704.03666] [INSPIRE]. · Zbl 1379.81050
[86] D. Grumiller et al., Menagerie of AdS_2boundary conditions, JHEP10 (2017) 203 [arXiv:1708.08471] [INSPIRE].
[87] K.S. Kolekar and K. Narayan, AdS_2dilaton gravity from reductions of some nonrelativistic theories, Phys. Rev.D 98 (2018) 046012 [arXiv:1803.06827] [INSPIRE].
[88] G. Sárosi, AdS_2holography and the SYK model, PoS(Modave2017)001 [arXiv:1711.08482] [INSPIRE].
[89] Poland, D.; Rychkov, S.; Vichi, A., The conformal bootstrap: theory, numerical techniques and applications, Rev. Mod. Phys., 91, 015002 (2019) · doi:10.1103/RevModPhys.91.015002
[90] Kumar, J., Conformal mechanics and the Virasoro algebra, JHEP, 04, 006 (1999) · Zbl 0953.81026 · doi:10.1088/1126-6708/1999/04/006
[91] Cacciatori, S.; Klemm, D.; Zanon, D., W (∞) algebras, conformal mechanics and black holes, Class. Quant. Grav., 17, 1731 (2000) · Zbl 0965.83024 · doi:10.1088/0264-9381/17/8/301
[92] S. Mignemi, A note on the infinite dimensional symmetries of classical Hamiltonian systems, hep-th/0004150 [INSPIRE].
[93] M. Arzano and J. Kowalski-Glikman, Horizon temperature on the real line, Phys. Lett. BC 788 (2019) 82 [arXiv:1804.10550] [INSPIRE]. · Zbl 1405.22030
[94] L. C. Biedenharn, J. Nuyts and N. Straumann, On the unitary representations of SU(1, 1) and SU(2, 1), Ann. I.H.P. Phys. Theor.3 (1965) 13. · Zbl 0137.25603
[95] W. Rühl, The Lorentz group and harmonic analysis, Mathematical physics monograph series, W.A. Benjamin, U.S.A. (1970). · Zbl 0249.43017
[96] A. Kitaev, Notes on \(\tilde{\text{SL}}\left(2,\mathbb{R}\right)\) representations, arXiv:1711.08169 [INSPIRE].
[97] G. Lindblad and B. Nage, Continuous bases for unitary irreducible representations of SU(1, 1), Ann. I.H.P. Phys. Theor.13 (1970) 27. · Zbl 0203.57202
[98] R. Jackiw and S.Y. Pi, Conformal blocks for the 4-point function in conformal quantum mechanics, Phys. Rev.D 86 (2012) 045017 [Erratum ibid.D 86 (2012) 089905] [arXiv:1205.0443] [INSPIRE].
[99] Hertog, T.; Horowitz, Gt, Towards a big crunch dual, JHEP, 07, 073 (2004) · doi:10.1088/1126-6708/2004/07/073
[100] Hertog, T.; Horowitz, Gt, Holographic description of AdS cosmologies, JHEP, 04, 005 (2005) · doi:10.1088/1126-6708/2005/04/005
[101] B. Craps, T. Hertog and N. Turok, On the quantum resolution of cosmological singularities using AdS/CFT, Phys. Rev.D 86 (2012) 043513 [arXiv:1712.4180].
[102] S. Gielen, D. Oriti and L. Sindoni, Homogeneous cosmologies as group field theory condensates, JHEP06 (2014) 013 [arXiv:1311.1238] [INSPIRE]. · Zbl 1333.81187
[103] D. Oriti, L. Sindoni and E. Wilson-Ewing, Bouncing cosmologies from quantum gravity condensates, Class. Quant. Grav.34 (2017) 04LT01 [arXiv:1602.08271] [INSPIRE]. · Zbl 1358.83103
[104] Oriti, D.; Sindoni, L.; Wilson-Ewing, E., Emergent Friedmann dynamics with a quantum bounce from quantum gravity condensates, Class. Quant. Grav., 33, 224001 (2016) · Zbl 1351.83073 · doi:10.1088/0264-9381/33/22/224001
[105] Oriti, D., The universe as a quantum gravity condensate, Comptes Rendus Physique, 18, 235 (2017) · doi:10.1016/j.crhy.2017.02.003
[106] J.E. Lidsey, Inflationary cosmology, diffeomorphism group of the line and Virasoro coadjoint orbits, arXiv:1802.09186 [INSPIRE].
[107] Mertens, Tg, The Schwarzian theory — Origins, JHEP, 05, 036 (2018) · Zbl 1391.83081 · doi:10.1007/JHEP05(2018)036
[108] Blommaert, A.; Mertens, Tg; Verschelde, H., The Schwarzian theory — A Wilson line perspective, JHEP, 12, 022 (2018) · Zbl 1405.83040 · doi:10.1007/JHEP12(2018)022
[109] Mertens, Tg; Turiaci, Gj; Verlinde, Hl, Solving the Schwarzian via the conformal bootstrap, JHEP, 08, 136 (2017) · Zbl 1381.83089 · doi:10.1007/JHEP08(2017)136
[110] Lam, Ht; Mertens, Tg; Turiaci, Gj; Verlinde, H., Shockwave S-matrix from Schwarzian quantum mechanics, JHEP, 11, 182 (2018) · Zbl 1404.83076 · doi:10.1007/JHEP11(2018)182
[111] Belokurov, Vv; Shavgulidze, Et, Correlation functions in the Schwarzian theory, JHEP, 11, 036 (2018) · Zbl 1404.81218 · doi:10.1007/JHEP11(2018)036
[112] Haehl, Fm; Rozali, M., Fine grained chaos in AdS2 gravity, Phys. Rev. Lett., 120, 121601 (2018) · doi:10.1103/PhysRevLett.120.121601
[113] Jensen, K., Chaos in AdS_2holography, Phys. Rev. Lett., 117, 111601 (2016) · doi:10.1103/PhysRevLett.117.111601
[114] Turiaci, G.; Verlinde, H., On CFT and quantum chaos, JHEP, 12, 110 (2016) · Zbl 1390.81191 · doi:10.1007/JHEP12(2016)110
[115] N.J. Cornish and E.P.S. Shellard, Chaos in quantum cosmology, Phys. Rev. Lett.81 (1998) 3571 [gr-qc/9708046] [INSPIRE].
[116] Damour, T.; Henneaux, M.; Nicolai, H., Cosmological billiards, Class. Quant. Grav., 20, R145 (2003) · Zbl 1138.83306 · doi:10.1088/0264-9381/20/9/201
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.