×

Langevin picture of subdiffusion with infinitely divisible waiting times. (English) Zbl 1177.82101

In many instances physics-motivated random transport processes deviate from the customary diffusion scenario. The present paper addresses a subdiffusive transport in the presence of time-dependent forces. The fractional integro-differential Fokker-Planck equation, derived and solved previously [Phys. Rev. Lett. 97, 140602 (2001)] by means of limit distribution of a continuous time random walk, is known to refer to a non-Markov stochastic process. Presently, so-called Langevin picture underlying the subdifffusive F-P dynamics has been proposed. An explicit construction of the pertinent subordinated Langevin process was given. A strongly and uniformly covergent approximation scheme for this process entails an efficient numerical simulation of its sample paths.

MSC:

82C70 Transport processes in time-dependent statistical mechanics
82C31 Stochastic methods (Fokker-Planck, Langevin, etc.) applied to problems in time-dependent statistical mechanics
60E07 Infinitely divisible distributions; stable distributions
60F05 Central limit and other weak theorems
60K37 Processes in random environments
60G52 Stable stochastic processes
65C30 Numerical solutions to stochastic differential and integral equations
26A33 Fractional derivatives and integrals
46F12 Integral transforms in distribution spaces
Full Text: DOI

References:

[1] Barkai, E., Metzler, R., Klafter, J.: From continuous time random walks to the fractional Fokker-Planck equation. Phys. Rev. E 61, 132–138 (2000) · doi:10.1103/PhysRevE.61.132
[2] Bertoin, J.: Lévy Processes. Cambridge University Press, Cambridge (1996) · Zbl 0861.60003
[3] Bertoin, J., van Harn, K., Steutel, F.W.: Renewal theory and level passage by subordinators. Stat. Probab. Lett. 45, 65–69 (1999) · Zbl 0965.60053 · doi:10.1016/S0167-7152(99)00043-7
[4] Daley, D.J., Vere-Jones, D.: An Introduction to the Theory of Point Processes, vol. 1, 2nd edn. Springer, New York (2003) · Zbl 1026.60061
[5] Eliazar, I., Klafter, J.: Lévy-driven Langevin systems: Targeted stochasticity. J. Stat. Phys. 111, 739–768 (2003) · Zbl 1049.82053 · doi:10.1023/A:1022894030773
[6] Grandell, J.: Doubly Stochastic Poisson Processes. Lecture Notes Math., vol. 529. Springer, Berlin (1976) · Zbl 0339.60053
[7] Heinsalu, E., Patriarca, M., Goychuk, I., Hänggi, P.: Use and abuse of a fractional Fokker-Planck dynamics for time-dependent driving. Phys. Rev. Lett. 99, 120602 (2007) · doi:10.1103/PhysRevLett.99.120602
[8] Janicki, A., Weron, A.: Simulation and Chaotic Behaviour of {\(\alpha\)}-Stable Stochastic Processes. Marcel Dekker, New York (1994) · Zbl 0955.60508
[9] Jurlewicz, A., Weron, K., Teuerle, M.: Generalized Mittag-Leffler relaxation: Clustering-jump continuous-time random walk approach. Phys. Rev. E 78, 011103 (2008) · doi:10.1103/PhysRevE.78.011103
[10] Kotz, S., Kozubowski, T.J., Podgórski, K.: The Laplace Distribution and Generalizations. A Revisit with Applications to Communications, Economics, Engineering and Finance. Birkhäuser, Boston (2001) · Zbl 0977.62003
[11] Lagerås, A.N.: A renewal-process-type expression for the moments of inverse subordinators. J. Appl. Probab. 42, 1134–1144 (2005) · Zbl 1094.60057 · doi:10.1239/jap/1134587822
[12] Magdziarz, M.: Stochastic representation of subdiffusion processes with time-dependent drift. Stoch. Proc. Appl., submitted (2008) · Zbl 1180.60051
[13] Magdziarz, M., Weron, A., Klafter, J.: Equivalence of the fractional Fokker-Planck and subordinated Langevin equations: The case of a time-dependent force. Phys. Rev. Lett. 101, 210601 (2008) · doi:10.1103/PhysRevLett.101.210601
[14] Meerschaert, M.M., Scheffler, H.P.: Stochastic model for ultraslow diffusion. Stoch. Proc. Appl. 116, 1215–1235 (2006) · Zbl 1100.60024 · doi:10.1016/j.spa.2006.01.006
[15] Meerschaert, M.M., Benson, D.A., Scheffler, H.P., Baeumer, B.: Stochastic solution of space-time fractional diffusion equations. Phys. Rev. E 65, 041103 (2002) · Zbl 1244.60080 · doi:10.1103/PhysRevE.65.041103
[16] Metzler, R., Klafter, J.: The random walk’s guide to anomalous diffusion: A fractional dynamics approach. Phys. Rep. 339, 1–77 (2000) · Zbl 0984.82032 · doi:10.1016/S0370-1573(00)00070-3
[17] Metzler, R., Barkai, E., Klafter, J.: Anomalous diffusion and relaxation close to thermal equilibrium: A fractional Fokker-Planck equation approach. Phys. Rev. Lett. 82, 3563–3567 (1999) · doi:10.1103/PhysRevLett.82.3563
[18] Montroll, E.W., Weiss, G.H.: Random walks on lattices II. J. Math. Phys. 6, 167–181 (1965) · Zbl 1342.60067 · doi:10.1063/1.1704269
[19] Rosinski, J.: Simulation of Lévy processes. In: Encyclopedia of Statistics in Quality and Reliability: Computationally Intensive Methods and Simulation. Wiley, New York (2008)
[20] Samko, S.G., Kilbas, A.A., Maritchev, D.I.: Integrals and Derivatives of the Fractional Order and Some of Their Applications. Gordon and Breach, Amsterdam (1993)
[21] Sato, K.-I.: Lévy Processes and Infinitely Divisible Distributions. Cambridge University Press, Cambridge (1999)
[22] Sokolov, I.M., Klafter, J.: Field-induced dispersion in subdiffusion. Phys. Rev. Lett. 97, 140602 (2006) · doi:10.1103/PhysRevLett.97.140602
[23] Stanislavsky, A.A., Weron, K., Weron, A.: Diffusion and relaxation controlled by tempered-stable processes. Phys. Rev. E 78, 051106 (2008) · Zbl 1164.82007 · doi:10.1103/PhysRevE.78.051106
[24] van Harn, K., Steutel, F.W.: Stationarity of delayed subordinators. Stoch. Models 17, 369–374 (2001) · Zbl 0988.60048 · doi:10.1081/STM-100002278
[25] Weron, R.: On the Chambers-Mallows-Stuck method for simulating skewed stable random variables. Stat. Probab. Lett. 28, 165–171 (1996) · Zbl 0856.60022 · doi:10.1016/0167-7152(95)00113-1
[26] Winkel, M.: Electronic foreign-exchange markets and passage events of independent subordinators. J. Appl. Probab. 42, 138–152 (2005) · Zbl 1078.60035 · doi:10.1239/jap/1110381376
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.