×

Polytropic gas modelling at kinetic and macroscopic levels. (English) Zbl 1479.76089

Summary: In this paper, we consider the kinetic model of continuous type describing a polyatomic gas in two different settings corresponding to a different choice of the functional space used to define macroscopic quantities. Such a model introduces a single continuous variable supposed to capture all the phenomena related to the more complex structure of a polyatomic molecule. In particular, we provide a direct comparison of these two settings, and show their equivalence after the distribution function is rescaled and the cross section is reformulated. We then focus on the kinetic model for which the rigorous existence and uniqueness result in the space homogeneous case is recently proven [I. M. Gamba and the second author, “On the Cauchy problem for Boltzmann equation modelling a polyatomic gas”, Preprint, arXiv:2005.01017]. Using the cross section proposed in that analysis together with the maximum entropy principle, we establish macroscopic models of six and fourteen fields. In the case of six moments, we calculate the exact, nonlinear, production term and prove its total agreement with extended thermodynamics. Moreover, for the fourteen moments model, we provide new expressions for relaxation times and transport coefficients in a linearized setting, that yield both matching with the experimental data for dependence of the shear viscosity upon temperature and a satisfactory agreement with the theoretical value of the Prandtl number.

MSC:

76P05 Rarefied gas flows, Boltzmann equation in fluid mechanics
35Q20 Boltzmann equations
82C40 Kinetic theory of gases in time-dependent statistical mechanics

References:

[1] M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, National Bureau of Standards Applied Mathematics Series, 55, U.S. Government Printing Office, Washington, D.C., 1964. · Zbl 0171.38503
[2] T. Arima; A. Mentrelli; T. Ruggeri, Molecular extended thermodynamics of rarefied polyatomic gases and wave velocities for increasing number of moments, Ann. Physics, 345, 111-140 (2014) · Zbl 1343.76063 · doi:10.1016/j.aop.2014.03.011
[3] T. Arima; T. Ruggeri; M. Sugiyama; S. Taniguchi, Non-linear extended thermodynamics of real gases with 6 fields, Int. J. Non-Lin. Mech., 72, 6-15 (2015) · doi:10.1016/j.ijnonlinmec.2015.02.005
[4] T. Arima; T. Ruggeri; M. Sugiyama; S. Taniguchi, Recent results on nonlinear extended thermodynamics of real gases with six fields Part I: General theory, Ric. Mat., 65, 263-277 (2016) · Zbl 1352.82014 · doi:10.1007/s11587-016-0283-y
[5] C. Baranger; M. Bisi; S. Brull; L. Desvillettes, On the Chapman-Enskog asymptotics for a mixture of monoatomic and polyatomic rarefied gases, Kinet. Relat. Models, 11, 821-858 (2018) · Zbl 1405.76041 · doi:10.3934/krm.2018033
[6] M. Bisi; T. Ruggeri; G. Spiga, Dynamical pressure in a polyatomic gas: Interplay between kinetic theory and extended thermodynamics, Kinet. Relat. Models, 11, 71-95 (2018) · Zbl 1376.80002 · doi:10.3934/krm.2018004
[7] C. Borgnakke; P. S. Larsen, Statistical collision model for Monte Carlo simulation of polyatomic gas mixture, J. Comput. Phys., 18, 405-420 (1975) · doi:10.1016/0021-9991(75)90094-7
[8] L. Boudin; B. Grec; M. Pavić-Čolić; F. Salvarani, A kinetic model for polytropic gases with internal energy, PAMM Proc. Appl. Math. Mech., 13, 353-354 (2013) · doi:10.1002/pamm.201310172
[9] J.-F. Bourgat; L. Desvillettes; P. Le Tallec; B. Perthame, Microreversible collisions for polyatomic gases and Boltzmann’s theorem, European J. Mech. B Fluids, 13, 237-254 (1994) · Zbl 0807.76067
[10] C. Cercignani, The Boltzmann Equation and Its Applications, Applied Mathematical Sciences, 67, Springer-Verlag, New York, 1988. · Zbl 0646.76001
[11] L. Desvillettes, Sur un modèle de type Borgnakke-Larsen conduisant à des lois d’energie non-linéaires en température pour les gaz parfaits polyatomiques, Ann. Fac. Sci. Toulouse Math. (6), 6 (1997), 257-262. · Zbl 0894.35086
[12] L. Desvillettes; R. Monaco; F. Salvarani, A kinetic model allowing to obtain the energy law of polytropic gases in the presence of chemical reactions, Eur. J. Mech. B Fluids, 24, 219-236 (2005) · Zbl 1060.76100 · doi:10.1016/j.euromechflu.2004.07.004
[13] W. Dreyer, Maximisation of the entropy in non-equilibrium, J. Phys. A, 20, 6505-6517 (1987) · Zbl 0633.76081 · doi:10.1088/0305-4470/20/18/047
[14] I. M. Gamba and M. Pavić-Čolić, On the Cauchy problem for Boltzmann equation modelling a polyatomic gas, preprint, arXiv: 2005.01017. · Zbl 1434.35036
[15] V. Giovangigli, Multicomponent Flow Modeling, Modeling and Simulation in Science, Engineering and Technology, Birkhäuser Boston, Inc., Boston, MA, 1999. · Zbl 0956.76003
[16] H. Grad, On the kinetic theory of rarefied gases, Comm. Pure Appl. Math., 2, 331-407 (1949) · Zbl 0037.13104 · doi:10.1002/cpa.3160020403
[17] M. Groppi; G. Spiga, Kinetic approach to chemical reactions and inelastic transitions in a rarefied gas, J. Math. Chem., 26, 197-219 (1999) · Zbl 1048.92502 · doi:10.1023/A:1019194113816
[18] M. N. Kogan, Rarefied Gas Dynamics, Springer, Boston, MA, 1969.
[19] S. Kosuge and K. Aoki, Shock-wave structure for a polyatomic gas with large bulk viscosity, Phys. Rev. Fluids, 3 (2018). · Zbl 1475.82020
[20] S. Kosuge; H.-W. Kuo; K. Aoki, A kinetic model for a polyatomic gas with temperature-dependent specific heats and its application to shock-wave structure, J. Stat. Phys., 177, 209-251 (2019) · Zbl 1448.76136 · doi:10.1007/s10955-019-02366-5
[21] E. W. Lemmon; R. T. Jacobsen, Viscosity and thermal conductivity equations for nitrogen, oxygen, argon and air, Int. J. Thermophys., 25, 21-69 (2004) · doi:10.1023/B:IJOT.0000022327.04529.f3
[22] C. D. Levermore, Moment closure hierarchies for kinetic theories, J. Statist. Phys., 83, 1021-1065 (1996) · Zbl 1081.82619 · doi:10.1007/BF02179552
[23] T. Magin, B. Graille and M. Massot, Kinetic theory derivation of transport equations for gases with internal energy, 42nd AIAA Thermophysics Conference, Honolulu, Hawaii, USA, 2011. · Zbl 1246.82078
[24] G. C. Maitland; E. B. Smith, Critical reassessment of viscosities of 11 common gases, J. Chem. Eng. Data, 17, 150-156 (1972) · doi:10.1021/je60053a015
[25] I. Müller, T. Ruggeri, Extended Thermodynamics, Springer Tracts in Natural Philosophy, 37, Springer-Verlag, New York, 1993. · Zbl 0801.35141
[26] E. Nagnibeda and E. Kustova, Non-Equilibrium Reacting Gas Flows. Kinetic Theory of Transport and Relaxation Processes, Heat and Mass Transfer, Springer-Verlag, Berlin, 2009. · Zbl 1186.82003
[27] M. Pavić; T. Ruggeri; S. Simić, Maximum entropy principle for rarefied polyatomic gases, Phys. A, 392, 1302-1317 (2013) · doi:10.1016/j.physa.2012.12.006
[28] M. Pavić-Čolić; D. Madjarević; S. Simić, Polyatomic gases with dynamic pressure: Kinetic non-linear closure and the shock structure, Int. J. Non-Lin. Mech., 92, 160-175 (2017) · doi:10.1016/j.ijnonlinmec.2017.04.008
[29] M. Pavić-Čolić; S. Simić, Moment equations for polyatomic gases, Acta Appl. Math., 132, 469-482 (2014) · Zbl 1300.82021 · doi:10.1007/s10440-014-9928-6
[30] B. Rahimi; H. Struchtrup, Macroscopic and kinetic modelling of rarefied polyatomic gases, J. Fluid Mech., 806, 437-505 (2016) · Zbl 1383.76412 · doi:10.1017/jfm.2016.604
[31] T. Ruggeri, Maximum entropy principle closure for 14-moment system for a non-polytropic gas, Ric. Mat., (2020). · Zbl 1468.76060
[32] T. Ruggeri, Non-linear maximum entropy principle for a polyatomic gas subject to the dynamic pressure, Bull. Inst. Math. Acad. Sin. (N.S.), 11, 1-22 (2016) · Zbl 1339.35248
[33] T. Ruggeri and M. Sugiyama, Rational Extended Thermodynamics Beyond the Monatomic Gas, Springer, Cham, 2015. · Zbl 1330.76003
[34] S. Simić; M. Pavić-Čolić; D. Madjarević, Non-equilibrium mixtures of gases: Modelling and computation, Riv. Math Univ. Parma (N.S.), 6, 135-214 (2015) · Zbl 1481.76186
[35] Y. Sone, Kinetic Theory and Fluid Dynamics, Modeling and Simulation in Science, Engineering and Technology, Birkhäuser Boston, Inc., Boston, MA, 2002. · Zbl 1021.76002
[36] Y. Sone, Molecular Gas Dynamics. Theory, Techniques, and Applications, Modeling and Simulation in Science, Engineering and Technology, Birkhäuser Boston, Inc., Boston, MA, 2007. · Zbl 1144.76001
[37] D. Stéphane, On the Wang Chang-Uhlenbeck equations, Discrete Contin. Dyn. Syst. Ser. B, 3, 229-253 (2003) · Zbl 1147.82332 · doi:10.3934/dcdsb.2003.3.229
[38] H. Struchtrup, The Boltzmann equation and its properties, in Macroscopic Transport Equations for Rarefied Gas Flows, Springer, Berlin, Heidelberg, 2005, 27-51. · Zbl 1119.76002
[39] S. Taniguchi; T. Arima; T. Ruggeri; M. Sugiyama, Overshoot of the non-equilibrium temperature in the shock wave structure of a rarefied polyatomic gas subject to the dynamic pressure, Int. J. Non-Lin. Mech., 79, 66-75 (2016) · doi:10.1016/j.ijnonlinmec.2015.11.003
[40] S. Taniguchi; T. Arima; T. Ruggeri; M. Sugiyama, Shock wave structure in a rarefied polyatomic gas based on extended thermodynamics, Acta Appl. Math., 132, 583-593 (2014) · Zbl 1295.76019 · doi:10.1007/s10440-014-9931-y
[41] S. Taniguchi, T. Arima, T. Ruggeri and M. Sugiyama, Thermodynamic theory of the shock wave structure in a rarefied polyatomic gas: Beyond the Bethe-Teller theory, Phys. Rev. E, 89 (2014). · Zbl 1295.76019
[42] C. S. Wang Chang, G. E. Uhlenbeck and J. de Boer, The heat conductivity and viscosity of polyatomic gases, in Studies in Statistical Mechanics, Vol. II, North-Holland, Amsterdam; Interscience, New York, 1964,241-268. · Zbl 0127.45005
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.