×

Multifluid plasma equations in terms of hyperbolic octonions. (English) Zbl 1391.76870

Summary: Stimulating from the hyperbolic octonionic generalization of the Maxwell-type equations of compressible fluids, an alternative reformulation has been proposed for the analogous multifluid plasma equations. In this paper, using both the fluid and electromagnetic behavior of the plasma, the compact and elegant expressions have been derived in terms of hyperbolic octonions as previously given for electromagnetic theory, linear gravity and fluid mechanics. Using the advantages of proposed model, the field equations of multifluid plasma have been combined in a single equation. Furthermore, the plasma wave equations in terms of generalized vorticity and Lamp vector have been expressed in a form similar to electromagnetic, gravitational counterparts previously given in relevant literature.

MSC:

76X05 Ionized gas flow in electromagnetic fields; plasmic flow
76T30 Three or more component flows
76N15 Gas dynamics (general theory)
35Q35 PDEs in connection with fluid mechanics
35Q61 Maxwell equations
35L05 Wave equation
11R52 Quaternion and other division algebras: arithmetic, zeta functions
83C22 Einstein-Maxwell equations
Full Text: DOI

References:

[1] Logan, J. G., Hydrodynamic analog of the classical field equations, Phys. Fluids5 (1962) 868-869.
[2] Troshkin, O. V., Perturbation waves in turbulent media, Comput. Math. Math. Phys.33 (1993) 1613-1628. · Zbl 0821.76038
[3] Marmanis, H., Analogy between the Navier-Stokes equations and Maxwell-equations: Application to turbulence, Phys. Fluids10 (1998) 1428-1437. · Zbl 1185.76666
[4] Kambe, T., A new formulation of equations of compressible fluids by analogy with Maxwell’s equations, Fluid Dyn. Res.42 (2010) 055502. · Zbl 1291.76270
[5] Kambe, T., On fluid Maxwell equations, in Frontiers of Fundamental Physics and Physics Education Research, eds. Sidharth, B. G.et al. (Springer, Cham, 2014), pp. 287-295.
[6] Scofield, D. F. and Huq, P., Fluid dynamical Lorentz force law and Poynting theorem — introduction, Fluid Dyn. Res.46 (2014) 055513.
[7] Scofield, D. F. and Huq, P., Fluid dynamical Lorentz force law and Poynting theorem — derivation and implications, Fluid Dyn. Res.46 (2014) 055514.
[8] Abreu, E. M. C., Neto, J. A., Mendes, A. C. R. and Sasaki, N., Abelian and non-Abelian considerations on compressible fluids with Maxwell-type equations and minimal coupling with the electromagnetic field, Phys. Rev. D91 (2015) 125011.
[9] Thompson, R. J. and Moeller, T. M., A Maxwell formulation for the equations of a plasma, Phys. Plasmas19 (2012) 010702.
[10] Thompson, R. J. and Moeller, T. M., Classical field isomorphism in two-fluid plasmas, Phys. Plasmas19 (2012) 082116.
[11] Hamilton, W. R., Elements of Quaternions (Chelsea, 1899). · JFM 30.0093.03
[12] Imaeda, K., A new formulation of classical electrodynamics, Nuovo Cimento B32 (1976) 138-162.
[13] Colombo, F., Loustaunau, P., Sabadini, I. and Struppa, D. C., Regular functions of biquaternionic variables and Maxwell’s equations, J. Geom. Phys.26 (1998) 183-201. · Zbl 0973.83007
[14] Lambek, J., If Hamilton had prevailed: Quaternions in physics, Math. Intelligencer17 (1995) 7-15. · Zbl 0836.01011
[15] Ward, J. P., Quaternions and Cayley Numbers (Kluwer, 1996).
[16] Kassandrov, V. V., Biquaternion electrodynamics and Weyl-Cartan geometry of space-time, Gravit. Cosmol.3 (1995) 216-222. · Zbl 0957.83527
[17] Majernik, V., Quaternionic formulation of the classical fields, Adv. Appl. Clifford Algebras9 (1999) 119-130. · Zbl 0943.35092
[18] Gsponer, A. and Hurni, J. P., Comment on formulating and generalizing Dirac’s, Proca’s, and Maxwell’s equations with biquaternions or Clifford numbers, Found. Phys. Lett.14 (2001) 77-85.
[19] Kravchenko, V. V., Quaternionic reformulation of Maxwell equations for inhomogeneous media and new solutions, Z. Anal. Anwendungen21 (2002) 21-26. · Zbl 0999.30033
[20] Kravchenko, V. V., On a quaternionic reformulation of Maxwells equations for chiral media and its applications, Z. Anal. Anwendungen22 (2003) 569-589. · Zbl 1060.30063
[21] Van Vlaenderen, K. J. and Waser, A., Electrodynamics with the scalar field, Hadronic J.27 (2004) 673-691. · Zbl 1062.81554
[22] Grudsky, S. M., Khmelnytskaya, K. V. and Kravchenko, V. V., On a quaternionic Maxwell equation for the time-dependent electromagnetic field in a chiral medium, J. Phys. A: Math. Gen.37 (2004) 4641-4647. · Zbl 1047.78003
[23] Tanışlı, M., Gauge transformation and electromagnetism with biquaternions, Europhys. Lett.74 (2006) 569-573.
[24] Demir, S. and Özdaş, K., Dual quaternionic reformulation of classical electromagnetism, Acta Phys. Slovaca53 (2003) 429-436.
[25] Demir, S., Matrix realization of dual quaternionic electromagnetism, Cent. Eur. J. Phys.5 (2007) 487-506.
[26] Demir, S., Tanışlı, M. and Candemir, N., Hyperbolic quaternion formulation of electromagnetism, Adv. Appl. Clifford Algebras20 (2010) 547-563. · Zbl 1203.78005
[27] Negi, O. P. S., Bisht, S. and Bisht, P. S., Revisiting quaternion formulation and electromagnetism, Nuovo Cimento B113 (1998) 1449-1467.
[28] Bisht, P. S. and Negi, O. P. S., Revisiting quaternion dual electrodynamics, Int. J. Theor. Phys.47 (2008) 3108-3120. · Zbl 1173.78001
[29] Singh, J., Bisht, P. S. and Negi, O. P. S., Quaternion analysis for generalized electromagnetic fields of dyons in an isotropic medium, J. Phys. A: Math. Theor.40 (2007) 9137-9147. · Zbl 1143.78003
[30] Bisht, P. S., Singh, J. and Negi, O. P. S., Generalized electromagnetic fields in a chiral medium, J. Phys. A: Math. Theor.40 (2007) 11395-11402. · Zbl 1128.78001
[31] Yefremov, A., Smarandache, F. and Christianto, V., Yang-Mills field from quaternion space geometry, and its Klein-Gordon representation, Prog. Phys.3 (2007) 42-50.
[32] Christianto, V. and Smarandache, F., Numerical solution of radial biquaternion Klein-Gordon equation, Prog. Phys.1 (2008) 40-41.
[33] Christianto, V., Smarandache, F. and Lichtenberg, F., A note of extended Proca equations and superconductivity, Prog. Phys.1 (2009) 40-43.
[34] Singh, A., Quaternionic form of linear equations for the gravitational field with Heavisidian monopoles, Lett. Nuovo Cimento32 (1981) 5-8.
[35] Majernik, V., Some astrophysical consequences of the extended Maxwell-like gravitational field equations, Astrophys. Space. Sci.84 (1982) 191-204. · Zbl 0501.70002
[36] Demir, S. and Tanışlı, M., Biquaternionic Proca-type generalization of gravity, Eur. Phys. J. Plus126 (2011) 51.
[37] Rajput, B. S., Unification of generalized electromagnetic and gravitational fields, J. Math. Phys.25 (1984) 351-353.
[38] Bisht, P. S., Negi, O. P. S. and Rajput, B. S., Quaternion formulation for unified fields of dyons and gravito-dyons, Indian J. Pure Appl. Phys.24 (1993) 543-549.
[39] Bisht, P. S., Negi, O. P. S. and Rajput, B. S., Null tetrad formulation of non-Abelian dyons, Int. J. Theor. Phys.32 (1993) 2099-2124.
[40] Dangwal, S., Bisht, P. S. and Negi, O. P. S., Theory of quaternion angular momentum for unifield fields of dyons, Russian Phys. J.49 (2006) 1274-1282. · Zbl 1258.81049
[41] Bisht, P. S., Karnatak, G. and Negi, O. P. S., Generalized gravi — electromagnetism, Int. J. Theor. Phys.49 (2010) 1344-1356. · Zbl 1194.81311
[42] Rawat, A. S. and Negi, O. P. S., Quaternion gravi-electromagnetism, Int. J. Theor. Phys.51 (2012) 738-745. · Zbl 1241.83011
[43] Demir, S. and Tanışlı, M., A compact biquaternionic formulation of massive field equations in gravi-electromagnetism, Eur. Phys. J. Plus126 (2011) 115.
[44] Weng, Z. H., Field equations in the complex quaternion spaces, Adv. Math. Phys.2014 (2014) 450262. · Zbl 1307.78003
[45] Demir, S., Uymaz, A. and Tanışlı, M., A new model for the reformulation of compressible fluid equations, Chin. J. Phys.55 (2017) 115-126. · Zbl 1539.76185
[46] Demir, S., Tanışlı, M., Şahin, N. and Kansu, M. E., Biquaternionic reformulation of multifluid plasma equations, Chin. J. Phys.55 (2017) 1329-1339. · Zbl 1539.35258
[47] Demir, S. and Tanışlı, M., Spacetime algebra for the reformulation of fluid field equations, Int. J. Geom. Methods Mod. Phys.14 (2017) 1750075. · Zbl 1431.83028
[48] Cafaro, C. and Ali, S. A., The spacetime algebra approach to massive classical electrodynamics with magnetic monopoles, Adv. Appl. Clifford Algebras17 (2007) 23-36. · Zbl 1113.78003
[49] Cafaro, C., Finite-range electromagnetic interaction and magnetic charges spacetime algebra or algebra of physical space?Adv. Appl. Clifford Algebras17 (2007) 617-634. · Zbl 1156.78002
[50] Demir, S., Space-time algebra for the generalization of gravitational field equations, Pramana J.Phys.80 (2013) 811-823.
[51] Mironov, V. L. and Mironov, S., Octonic representation of electromagnetic field equations, J. Math. Phys.50 (2009) 012901. · Zbl 1189.78002
[52] Mironov, V. L. and Mironov, S., Octonic first-order equations of relativistic quantum mechanics, Int. J. Mod. Phys. A24 (2009) 4157-4167. · Zbl 1175.81124
[53] Mironov, V. L. and Mironov, S., Octonic second-order equations of relativistic quantum mechanics, J. Math. Phys.50 (2009) 012302. · Zbl 1189.81086
[54] Tolan, T., Tanışlı, M. and Demir, S., Octonic form of Proca-Maxwells equations and relativistic derivation of electromagnetism, Int. J. Theor. Phys.52 (2013) 4488-4506. · Zbl 1282.78009
[55] Demir, S., Tanışlı, M. and Tolan, T., Octonic gravitational field equations, Int. J. Mod. Phys. A28 (2013) 1350112. · Zbl 1277.83044
[56] Tanışlı, M., Demir, S. and Şahin, N., Octonic formulations of Maxwell type fluid equations, J. Math. Phys.56 (2015) 091701. · Zbl 1327.76119
[57] Baez, J. C., The octonions, Bull. Amer. Math. Soc.39 (2002) 145-205. · Zbl 1026.17001
[58] Chanyal, B. C., Bisht, P. S. and Negi, O. P. S., Generalized octonion electrodynamics, Int. J. Theor. Phys.49 (2010) 1333-1343. · Zbl 1194.81312
[59] Chanyal, B. C., Bisht, P. S. and Negi, O. P. S., Generalized split-octonion electrodynamics, Int. J. Theor. Phys.50 (2011) 1919-1926. · Zbl 1225.81147
[60] Tanışlı, M., Kansu, M. E. and Demir, S., Reformulation of electromagnetic and gravito-electromagnetic equations for Lorentz system with octonion algebra, Gen. Relativ. Gravit.46 (2014) 1739. · Zbl 1291.83021
[61] Kansu, M. E., Tanışlı, M. and Demir, S., Representation of electromagnetic and gravitoelectromagnetic Poynting theorems in higher dimensions, Turk. J. Phys.38 (2014) 155-164.
[62] Bisht, P. S. and Negi, O. P. S., Split octonion electrodynamics, Indian J. Pure Appl. Phys.31 (1993) 292-296. · Zbl 1225.81147
[63] Gogberashvili, M., Octonionic electrodynamics, J. Phys. A: Math. Gen.39 (2006) 7099-7104. · Zbl 1122.78001
[64] Candemir, N., Özdaş, K., Tanışlı, M. and Demir, S., Hyperbolic octonionic Proca-Maxwell equations, Z. Naturforsch. A63 (2008) 15-18.
[65] Bisht, P. S. and Negi, O. P. S., Octonion wave equation and tachyon electrodynamics, Pramana J. Phys.73 (2009) 605-613.
[66] Nurowski, P., Split octonions and Maxwell equations, Acta Phys. Polon. A116 (2009) 992-993.
[67] Kansu, M. E., Tanışlı, M. and Demir, S., A new approach to Lorentz invariance in electromagnetism with hyperbolic octonions, Eur. Phys. J. Plus127 (2012) 69.
[68] Chanyal, B. C., Bisht, P. S. and Negi, O. P. S., Octonion and conservation laws for dyons, Int. J. Mod. Phys. A28 (2013) 1350125. · Zbl 1277.78007
[69] Demir, S., Hyperbolic octonion formulation of gravitational field equations, Int. J. Theor. Phys.52 (2013) 105-116. · Zbl 1263.83059
[70] Chanyal, B. C., Split octonion reformulation of generalized linear gravitational field equations, J. Math. Phys.56 (2015) 051702. · Zbl 1317.83018
[71] Chanyal, B. C., Classical geometrodynamics with Zorn vector-matrix algebra for gravito-dyons, Rep. Math. Phys.76 (2015) 1-20. · Zbl 1326.83063
[72] Bisht, P. S., Dangwal, S. and Negi, O. P. S., Unified split octonion formulation of dyons, Int. J. Theor. Phys.47 (2008) 2297-2313. · Zbl 1161.83407
[73] Chanyal, B. C., Sharma, V. K. and Negi, O. P. S., Octonionic gravi-electromagnetism and dark matter, Int. J. Theor. Phys.54 (2015) 3516-3532. · Zbl 1327.83266
[74] Demir, S., Tanışlı, M. and Kansu, M. E., Generalized hyperbolic octonion formulation for the fields of massive dyons and gravito-dyons, Int. J. Theor. Phys.52 (2013) 3696-3711. · Zbl 1274.81272
[75] Köplinger, J., Dirac equation on hyperbolic octonions, Appl. Math. Comput.182 (2006) 443-446. · Zbl 1134.81357
[76] Gogberashvili, M., Octonionic version of Dirac equation, Int. J. Mod. Phys. A21 (2006) 3513. · Zbl 1095.81022
[77] Dzhunushaliev, V., Colorless operators in a non-associative quantum theory, Phys. Lett. A355 (2006) 298-302. · Zbl 1398.81012
[78] Dzhunushaliev, V., Nonassociativity, supersymmetry, and hidden variables, J. Math. Phys.49 (2008) 042108. · Zbl 1152.81418
[79] Dzhunushaliev, V., Hidden nonassociative structure in supersymmetric quantum mechanic, Ann. Phys.522 (2010) 382-388. · Zbl 1201.81062
[80] Demir, S. and Tanışlı, M., Hyperbolic octonion formulation of the fluid Maxwell equations, J. Korean Phys. Soc.68 (2016) 616-623.
[81] Carmody, K., Circular and hyperbolic quaternions, octonions, and sedenions, Appl. Math. Comput.28 (1988) 47-72. · Zbl 0658.17025
[82] Carmody, K., Circular and hyperbolic quaternions, octonions, and sedenions — Further results, Appl. Math. Comput.84 (1997) 27-47. · Zbl 0936.11025
[83] Maxwell, J. C., A Treatise on Electricity and Magnetism (Clarendon Press, 1873). · JFM 05.0556.01
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.