×

An alternative approach to energy eigenvalue problems of anharmonic potentials. (English) Zbl 1303.81083

Summary: Energy eigenvalues of quartic and sextic type anharmonic potentials are obtained by using an alternative method called asymptotic Taylor expansion method (ATEM) which is an approximate approach based on the asymptotic Taylor series expansion of a function. It is shown that the energy eigenvalues found by ATEM are in excellent agreement with the existing results.

MSC:

81Q10 Selfadjoint operator theory in quantum theory, including spectral analysis
81Q05 Closed and approximate solutions to the Schrödinger, Dirac, Klein-Gordon and other equations of quantum mechanics
35C20 Asymptotic expansions of solutions to PDEs

Software:

Mathematica

References:

[1] Y. P. Varshni, “Eigenenergies and oscillator strengths for the Hulthén potential,” Physical Review A, vol. 41, no. 9, pp. 4682-4689, 1990. · doi:10.1103/PhysRevA.41.4682
[2] M. A. Nunez, “Accurate computation of eigenfunctions for Schrödinger operators associated with Coulomb-type potentials,” Physical Review A, vol. 47, no. 5, pp. 3620-3631, 1993. · doi:10.1103/PhysRevA.47.3620
[3] P. Matthys and H. de Meyer, “Dynamical-group approach to the Hulthén potential,” Physical Review A, vol. 38, no. 3, pp. 1168-1171, 1988. · doi:10.1103/PhysRevA.38.1168
[4] C. Stubbins, “Bound states of the Hulthén and Yukawa potentials,” Physical Review A, vol. 48, no. 1, pp. 220-227, 1993. · doi:10.1103/PhysRevA.48.220
[5] Y. P. Varshni, “Relative convergences of the WKB and SWKB approximations,” Journal of Physics A Mathematical and General, vol. 25, no. 21, pp. 5761-5777, 1992. · Zbl 0774.65064 · doi:10.1088/0305-4470/25/21/029
[6] G. A. Dobrovolsky and R. S. Tutik, “Regularization of the {WKB} integrals,” Journal of Physics A: Mathematical and General, vol. 33, no. 37, pp. 6593-6599, 2000. · Zbl 1008.81024 · doi:10.1088/0305-4470/33/37/311
[7] A. Z. Tang and F. T. Chan, “Shifted 1/N expansion for the Hulthén potential,” Physical Review A, vol. 35, no. 2, pp. 911-914, 1987. · doi:10.1103/PhysRevA.35.911
[8] R. K. Roychoudhury and Y. P. Varshni, “Shifted 1/N expansion and exact solutions for the potential V(r)=-Z/r+gr+\lambda r2,” Journal of Physics A: Mathematical and General, vol. 21, no. 13, pp. 3025-3034, 1988. · Zbl 0683.35077 · doi:10.1088/0305-4470/21/13/025
[9] A. F. Nikiforov and V. B. Uvarov, Special Functions of Mathematical Physics, Birkhäuser, Basel, Switzerland, 1988. · Zbl 0624.33001
[10] S. W. Qian, B. W. Huang, and Z. Y. Gu, “Supersymmetry and shape invariance of the effective screened potential,” New Journal of Physics, vol. 4, p. 13, 2002. · doi:10.1088/1367-2630/4/1/313
[11] P. Maknikowski and A. Radosz, “Comment on “Bounces and the calculation of quantum tunnelling effects for the asymmetric double-well potential”: [B. Zhou, J.-Q. Liang, F.-Ch. Pud, Phys. Lett. A 271 (2000) 26],” Physics Letters A, vol. 292, no. 4-5, pp. 300-302, 2002. · Zbl 0989.81029 · doi:10.1016/S0375-9601(01)00806-4
[12] B. Zhou, J. Q. Liang, and F. C. Pud, “Quantum tunneling for the asymmetric double-well potential at finite energy,” Physics Letters A, vol. 281, no. 2-3, pp. 105-112, 2001. · Zbl 0984.81026 · doi:10.1016/S0375-9601(01)00058-5
[13] E. Paspalakis, “Physical interpretation of laser-induced suppression of quantum tunneling,” Physics Letters A, vol. 261, no. 5-6, pp. 247-251, 1999. · doi:10.1016/S0375-9601(99)00630-1
[14] J. Chen, L. C. Kwek, and C. H. Oh, “Quartic anharmonic oscillator and non-hermiticity,” Physical Review A: Atomic, Molecular, and Optical Physics, vol. 67, no. 1, Article ID 012101, 9 pages, 2003.
[15] F. Zhou, Z. Cao, and Q. Shen, “Energy splitting in symmetric double-well potentials,” Physics Letters A, vol. 67, Article ID 062112, 2003. · doi:10.1103/PhysRevA.67.062112
[16] Y. He, Z. Cao, and Q. Shen, “Bound-state spectra for supersymmetric quantum mechanics,” Physics Letters A, vol. 326, no. 5-6, pp. 315-321, 2004. · Zbl 1138.81421 · doi:10.1016/j.physleta.2004.04.051
[17] A. Hutem and C. Sricheewin, “Ground-state energy eigenvalue calculation of the quantum mechanical well Vx=12kx2+\lambda x4 via analytical transfer matrix method,” European Journal of Physics, vol. 29, no. 3, p. 577, 2008. · Zbl 1140.81383 · doi:10.1088/0143-0807/29/3/017
[18] R. Ko\cc and S. Sayın, “Remarks on the solution of the position-dependent mass Schrödinger equation,” Journal of Physics A: Mathematical and Theoretical, vol. 43, no. 45, Article ID 455203, 2010. · Zbl 1204.81055 · doi:10.1088/1751-8113/43/45/455203
[19] Wolfram Research, “Mathematica, Version 8.0,” Wolfram Research, Champaign, Ill, USA, 2010.
[20] O. Ozer, H. Koklu, and S. Resitoglu, “Application of the asymptotic Taylor expansion method to bistable potentials,” Advances in Mathematical Physics, vol. 2013, Article ID 239254, 8 pages, 2013. · Zbl 1292.81056 · doi:10.1155/2013/239254
[21] C. S. Hsue and J. L. Chern, “Two-step approach to one-dimensional anharmonic oscillators,” Physical Review D, vol. 29, article 643, 1984. · doi:10.1103/PhysRevD.29.643
[22] G. P. Flessas, R. R. Whitehead, and A. Rigas, “On the \alpha x2 + \beta x4 interaction,” Journal of Physics A, vol. 16, no. 1, p. 85, 1983. · Zbl 0489.35016 · doi:10.1088/0305-4470/16/1/016
[23] A. R. Bonham and S. L. Su, “Use of hellmann-feynman and hypervirial theorems to obtain anharmonic vibration-rotation expectation values and their application to gas diffraction,” The Journal of Chemical Physics, vol. 45, p. 2827, 1996.
[24] M. Reed and B. Simon, Methods of Modern Mathematical Physics, IV Analysis of Operators, Academic Press, New York, NY, USA, 1978. · Zbl 0401.47001
[25] C. Quigg and J. L. Rosner, “Quantum mechanics with applications to quarkonium,” Physics Reports C, vol. 56, no. 4, pp. 167-235, 1979. · doi:10.1016/0370-1573(79)90095-4
[26] A. Khare and Y. P. Varshni, “Is shape invariance also necessary for lowest order supersymmetric WKB to be exact?” Physics Letters A, vol. 142, no. 1, pp. 1-4, 1989. · doi:10.1016/0375-9601(89)90701-9
[27] G. R. P. Borges, A. de Souza Dutra, E. Drigo, and J. R. Ruggiero, “Variational method for excited states from supersymmetric techniques,” Canadian Journal of Physics, vol. 81, no. 11, pp. 1283-1291, 2003. · doi:10.1139/p03-096
[28] G. Harvey and J. Tobochnik, An Introduction to Computer Simulation Methods: Applications to Physical Systems, Addison-Wesley, Reading, Mass, USA, 2nd edition, 1996.
[29] A. V. Turbiner, “Quasi-exactly-solvable problems and sl(2) algebra,” Communications in Mathematical Physics, vol. 118, no. 3, pp. 467-474, 1988. · Zbl 0683.35063 · doi:10.1007/BF01466727
[30] M. A. Shifman, “New findings in quantum mechanics (partial algebraization of the spectral problem),” International Journal of Modern Physics A, vol. 4, no. 12, pp. 2897-2952, 1989. · doi:10.1142/S0217751X89001151
[31] P. Roy, R. Roychoudhury, and Y. P. Varshni, “On the application of supersymmetric WKB (Wentzel-Kramers-Brillouin) method to quasi-exactly solvable problems,” Canadian Journal of Physics, vol. 69, no. 10, pp. 1261-1263, 1991. · Zbl 0991.81513 · doi:10.1139/p91-189
[32] R. N. Chaudhuri and M. Mondal, “Eigenvalues of anharmonic oscillators and the perturbed Coulomb problem in N-dimensional space,” Physical Review A, vol. 52, no. 3, pp. 1850-1856, 1995. · doi:10.1103/PhysRevA.52.1850
[33] V. Jelic and F. Marsiglio, “The double-well potential in quantum mechanics: a simple, numerically exact formulation,” European Journal of Physics, vol. 33, no. 6, pp. 1651-1666, 2012. · Zbl 1277.81045 · doi:10.1088/0143-0807/33/6/1651
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.