×

Application of the asymptotic Taylor expansion method to bistable potentials. (English) Zbl 1292.81056

Summary: A recent method called Asymptotic Taylor Expansion Method (ATEM) is applied to determine the analytical expression for eigenfunctions and numerical results for eigenvalues of the Schrödinger equation for the bistable potentials. Optimal truncation of the Taylor series gives a best possible analytical expression for eigenfunctions and numerical results for eigenvalues. It is shown that the results are obtained by a simple algorithm constructed for a computer system using symbolic or numerical calculation. It is observed that ATEM produces excellent results consistent with the existing literature.

MSC:

81Q10 Selfadjoint operator theory in quantum theory, including spectral analysis
81Q05 Closed and approximate solutions to the Schrödinger, Dirac, Klein-Gordon and other equations of quantum mechanics
41A58 Series expansions (e.g., Taylor, Lidstone series, but not Fourier series)

Software:

Mathematica

References:

[1] E. Schrödinger, “Quantisierung als Eigenwertproblem,” Annalen der Physik, vol. 79, no. 4, pp. 361-376, 1926. · JFM 52.0965.08 · doi:10.1002/andp.19263840404
[2] Y. P. Varshni, “Eigenenergies and oscillator strengths for the Hulthén potential,” Physical Review A, vol. 41, no. 9, pp. 4682-4689, 1990. · doi:10.1103/PhysRevA.41.4682
[3] M. A. Nunez, “Accurate computation of eigenfunctions for Schrödinger operators associated with Coulomb-type potentials,” Physical Review A, vol. 47, no. 5, pp. 3620-3631, 1993. · doi:10.1103/PhysRevA.47.3620
[4] C. Stubbins, “Bound states of the Hulthén and Yukawa potentials,” Physical Review A, vol. 48, no. 1, pp. 220-227, 1993. · doi:10.1103/PhysRevA.48.220
[5] P. Matthys and H. de Meyer, “Dynamical-group approach to the Hulthén potential,” Physical Review A, vol. 38, no. 3, pp. 1168-1171, 1988. · doi:10.1103/PhysRevA.38.1168
[6] Y. P. Varshni, “Relative convergences of the WKB and SWKB approximations,” Journal of Physics A, vol. 25, no. 21, pp. 5761-5777, 1992. · Zbl 0774.65064 · doi:10.1088/0305-4470/25/21/029
[7] G. A. Dobrovolsky and R. S. Tutik, “Regularization of the WKB integrals,” Journal of Physics A, vol. 33, no. 37, pp. 6593-6599, 2000. · Zbl 1008.81024 · doi:10.1088/0305-4470/33/37/311
[8] A. Z. Tang and F. T. Chan, “Shifted 1/N expansion for the Hulthén potential,” Physical Review A, vol. 35, no. 2, pp. 911-814, 1987. · doi:10.1103/PhysRevA.35.911
[9] R. K. Roychoudhury and Y. P. Varshni, “Shifted 1/N expansion and exact solutions for the potential V(r)=-Z/r+gr+\lambda r2,” Journal of Physics A, vol. 21, no. 13, pp. 3025-3034, 1988. · Zbl 0683.35077 · doi:10.1088/0305-4470/21/13/025
[10] A. F. Nikiforov and V. B. Uvarov, Special Functions of Mathematical Physics, Birkhäuser, Basel, Switzerland, 1988. · Zbl 0624.33001
[11] B. Gönül and K. Köksal, “A search on the Nikiforov-Uvarov formalism,” Physica Scripta, vol. 75, no. 5, pp. 686-690, 2007. · Zbl 1136.81355 · doi:10.1088/0031-8949/75/5/017
[12] B. Gönül, O. Özer, Y. Can\ccelik, and M. Ko\ccak, “Hamiltonian hierarchy and the Hulthén potential,” Physics Letters A, vol. 275, no. 4, pp. 238-243, 2000. · Zbl 1115.81349 · doi:10.1016/S0375-9601(00)00590-9
[13] S. W. Qian, B. W. Huang, and Z. Y. Gu, “Supersymmetry and shape invariance of the effective screened potential,” New Journal of Physics, vol. 4, article 13, 2002. · doi:10.1088/1367-2630/4/1/313
[14] A. K. Roy, “The generalized pseudospectral approach to the bound states of the Hulthén and the Yukawa potentials,” Pramana Journal of Physics, vol. 65, no. 1, pp. 1-15, 2005. · doi:10.1007/BF02704371
[15] H. Ciftci, R. L. Hall, and N. Saad, “Asymptotic iteration method for eigenvalue problems,” Journal of Physics A, vol. 36, no. 47, pp. 11807-11816, 2003. · Zbl 1070.34113 · doi:10.1088/0305-4470/36/47/008
[16] C. S. Lai and W. C. Lin, “Energies of the Hulthén potential for l\neq 0,” Physics Letters A, vol. 78, no. 4, pp. 335-337, 1980. · doi:10.1016/0375-9601(80)90388-6
[17] S. H. Patil, “Energy levels of screened Coulomb and Hulthen potentials,” Journal of Physics A, vol. 17, no. 3, article 575, 1984. · doi:10.1088/0305-4470/17/3/019
[18] B. Roy and R. Roychoudhury, “The shifted 1/N expansion and the energy eigenvalues of the Hulthen potential for l not = 0,” Journal of Physics A, vol. 20, no. 10, p. 3051, 1987. · doi:10.1088/0305-4470/20/10/048
[19] R. L. Greene and C. Aldrich, “Variational wave functions for a screened Coulomb potential,” Physical Review A, vol. 14, no. 6, pp. 2363-2366, 1976. · doi:10.1103/PhysRevA.14.2363
[20] U. Myhrman, “A recurrence formula for obtaining certain matrix elements in the base of eigenfunctions of the Hamiltonian for a particular screened potential,” Journal of Physics A, vol. 16, no. 2, pp. 263-270, 1983. · doi:10.1088/0305-4470/16/2/009
[21] A. Bechlert and W. Bhring, “Analytic model of atomic screening based on a generalised Hulthen potential,” Journal of Physics B, vol. 21, no. 5, p. 817, 1988. · doi:10.1088/0953-4075/21/5/012
[22] R. Ko\cc and S. Sayın, “Remarks on the solution of the position-dependent mass Schrödinger equation,” Journal of Physics A, vol. 43, no. 45, Article ID 455203, 8 pages, 2012. · Zbl 1204.81055 · doi:10.1088/1751-8113/43/45/455203
[23] M. Razavy, “An exactly soluble Schrödinger equation with a bistable potential,” American Journal of Physics, vol. 48, no. 4, p. 285, 1980. · Zbl 0982.81512 · doi:10.1119/1.12141
[24] Q.-T. Xie, “New quasi-exactly solvable double-well potentials,” Journal of Physics A, vol. 45, no. 17, Article ID 175302, 7 pages, 2012. · Zbl 1241.81071 · doi:10.1088/1751-8113/45/17/175302
[25] B. U. Felderhof, “Diffusion in a bistable potential,” Physica A, vol. 387, no. 21, pp. 5017-5023, 2008. · doi:10.1016/j.physa.2008.04.034
[26] H. Ciftci, O. Ozer, and P. Roy, “Asymptotic iteration approach to supersymmetric bistable potentials,” Chinese Physics B, vol. 21, no. 1, Article ID 010303, 2012. · doi:10.1088/1674-1056/21/1/010303
[27] T. Barakat, “The asymptotic iteration method for the eigenenergies of the anharmonic oscillator potential V(x)=Ax2\alpha +Bx2,” Physics Letters A, vol. 344, no. 6, pp. 411-417, 2005. · Zbl 1194.81060 · doi:10.1016/j.physleta.2005.06.081
[28] A. J. Sous, “Solution for the eigenenergies of sextic anharmonic oscillator potential V(x)=A6x6+A4x4+A2x2,” Modern Physics Letters A, vol. 21, no. 21, pp. 1675-1682, 2006. · Zbl 1099.81031 · doi:10.1142/S0217732306019918
[29] T. Barakat and O. M. Al-Dossary, “The asymptotic iteration method for the eigenenergies of the asymmetrical quantum anharmonic oscillator potentials Vx=\sum j=22\alpha Ajxj,” International Journal of Modern Physics A, vol. 22, no. 1, pp. 203-212, 2007. · Zbl 1107.81018 · doi:10.1142/S0217751X07034131
[30] T. Brook, Methodus Incrementorum Directa et Inversa (Direct and Reverse Methods of Incrementation), impensis Gulielmi Innys, London, UK, 1715.
[31] D. J. Struik, A Source Book in Mathematics, Translated into English, University Press, Cambridge, Mass, USA, 1969. · Zbl 0205.29202
[32] Wolfram Research, Mathematica, Version 8. 0, Wolfram Research, Champaign, Ill, USA, 2010.
[33] J. P. Boyd, “The devil’s invention: asymptotic, superasymptotic and hyperasymptotic series,” Acta Applicandae Mathematicae, vol. 56, no. 1, pp. 1-98, 1999. · Zbl 0972.34044 · doi:10.1023/A:1006145903624
[34] C. S. Hsue and J. L. Chern, “Two-step approach to one-dimensional anharmonic oscillators,” Physical Review D, vol. 29, no. 4, pp. 643-647, 1984. · doi:10.1103/PhysRevD.29.643
[35] G. P. Flessas, R. R. Whitehead, and A. Rigas, “On the \alpha x2+\beta x4 interaction,” Journal of Physics A, vol. 16, no. 1, pp. 85-97, 1983. · Zbl 0489.35016 · doi:10.1088/0305-4470/16/1/016
[36] R. A. Bonham and L. S. Su, “Use of Hellmann-Feynman and hypervirial theorems to obtain anharmonic vibration-rotation expectation values and their application to gas diffraction,” Journal of Chemical Physics, vol. 45, no. 8, p. 2827, 1996. · doi:10.1063/1.1728034
[37] M. Reed and B. Simon, Methods of Modern Mathematical Physics, IV: Analysis of Operators, Academic Press, New York, NY, USA, 1978. · Zbl 0401.47001
[38] N. Aquino, “Asymptotic series for the quantum quartic anharmonic oscillator,” Journal of Mathematical Chemistry, vol. 18, no. 2, pp. 349-357, 1995. · Zbl 0873.65079 · doi:10.1007/BF01164665
[39] B. Bacus, Y. Meurice, and A. Soemadi, “Precise determination of the energy levels of the anharmonic oscillator from the quantization of the angle variable,” Journal of Physics A, vol. 28, no. 14, pp. L381-L385, 1995. · Zbl 0859.34065 · doi:10.1088/0305-4470/28/14/002
[40] B. Gönül, N. \cCelik, and E. Ol\ugar, “A new algebraic approach to perturbation theory,” Modern Physics Letters A, vol. 20, no. 22, pp. 1683-1694, 2005. · Zbl 1075.81534 · doi:10.1142/S0217732305016737
[41] R. Koc and E. Olgar, 2010, Preprint math-ph/1008.0697.
[42] K. Banerjee, “General anharmonic oscillators,” Proceedings of the Royal Society of London A, vol. 364, no. 1717, pp. 265-275, 1978. · doi:10.1098/rspa.1978.0200
[43] G. R. P. Borges, E. D. Filho, and R. M. Ricotta, “Variational supersymmetric approach to evaluate Fokker-Planck probability,” Physica A, vol. 389, no. 18, pp. 3892-3899, 2010. · doi:10.1016/j.physa.2010.05.027
[44] A. Khare and Y. P. Varshni, “Is shape invariance also necessary for lowest order supersymmetric WKB to be exact?” Physics Letters A, vol. 142, no. 1, pp. 1-4, 1989.
[45] F. So and K. L. Liu, “Study of the Fokker-Planck equation of bistable systems by the method of state-dependent diagonalization,” Physica A, vol. 277, no. 3, pp. 335-348, 2000. · doi:10.1016/S0378-4371(99)00554-3
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.