×

Linear sampling method applied to non destructive testing of an elastic waveguide: theory, numerics and experiments. (English) Zbl 1431.65205

Summary: This paper presents an application of the linear sampling method to ultrasonic non destructive testing of an elastic waveguide. In particular, the NDT context implies that both the solicitations and the measurements are located on the surface of the waveguide and are given in the time domain. Our strategy consists in using a modal formulation of the linear sampling method at multiple frequencies, such modal formulation being justified theoretically in [L. Bourgeois et al., Inverse Probl. 27, No. 5, 055001, 27 p. (2011; Zbl 1217.35209)] for rigid obstacles and in [L. Bourgeois and E. Lunéville, Inverse Probl. 29, No. 2, Article ID 025017, 19 p. (2013; Zbl 1334.74011)] for cracks. Our strategy requires the inversion of some emission and reception matrices which deserve some special attention due to potential ill-conditioning. The feasibility of our method is proved with the help of artificial data as well as real data.

MSC:

65N21 Numerical methods for inverse problems for boundary value problems involving PDEs
35Q74 PDEs in connection with mechanics of deformable solids
74J20 Wave scattering in solid mechanics
74J25 Inverse problems for waves in solid mechanics

References:

[1] Bourgeois, L.; Le Louër, F.; Lunéville, E., On the use of Lamb modes in the linear sampling method for elastic waveguides, Inverse Problems, 27, (2011) · Zbl 1217.35209 · doi:10.1088/0266-5611/27/5/055001
[2] Bourgeois, L.; Lunéville, E., On the use of the linear sampling method to identify cracks in elastic waveguides, Inverse Problems, 29, (2013) · Zbl 1334.74011 · doi:10.1088/0266-5611/29/2/025017
[3] Huthwaite, P., Evaluation of inversion approaches for guided wave thickness mapping, Proc. R. Soc. A, 470, (2014) · doi:10.1098/rspa.2014.0063
[4] Demma, A.; Cawley, P.; Lowe, M.; Roosenbrand, A.; Pavlakovic, B., The reflection of guided waves from notches in pipes: a guide for interpreting corrosion measurements, NDT & E Int., 37, 167-180, (2004) · doi:10.1016/j.ndteint.2003.09.004
[5] Fletcher, S.; Lowe, M. J S.; Ratassepp, M.; Brett, C., Detection of axial cracks in pipes using focused guided waves, J. Nondestruct. Eval., 31, 56-64, (2012) · doi:10.1007/s10921-011-0120-x
[6] Willey, C.; Simonetti, F.; Nagy, P.; Instanes, G., Guided wave tomography of pipes with high-order helical modes, NDT & E Int., 65, 8-21, (2014) · doi:10.1016/j.ndteint.2014.03.010
[7] Rao, J.; Ratassepp, M.; Fan, Z., Guided wave tomography based on full waveform inversion, IEEE Trans. Ultrason. Ferroelectr. Freq. Control, 63, 737-745, (2016) · doi:10.1109/TUFFC.2016.2536144
[8] Rodriguez, S.; Deschamps, M.; Castaings, M.; Ducasse, E., Guided wave topological imaging of isotropic plates, Ultrasonics, 54, 1880-1890, (2014) · doi:10.1016/j.ultras.2013.10.001
[9] Holmes, C.; Drinkwater, B. W.; Wilcox, P. D., Post-processing of the full matrix of ultrasonic transmit-receive array data for non-destructive evaluation, NDT & E Int., 38, 701-711, (2005) · doi:10.1016/j.ndteint.2005.04.002
[10] Le Jeune, L.; Robert, S.; Lopez Villaverde, E.; Prada, C., Plane wave imaging for ultrasonic non-destructive testing: generalization to multimodal imaging, Ultrasonics, 64, 128-138, (2016) · doi:10.1016/j.ultras.2015.08.008
[11] Colton, D.; Kirsch, A., A simple method for solving inverse scattering problems in the resonance region, Inverse Problems, 12, 383-393, (1996) · Zbl 0859.35133 · doi:10.1088/0266-5611/12/4/003
[12] Arens, T., Linear sampling methods for 2D inverse elastic wave scattering, Inverse Problems, 17, 1445-1464, (2001) · Zbl 0985.35105 · doi:10.1088/0266-5611/17/5/314
[13] Charalambopoulos, A.; Gintides, D.; Kiriaki, K., The linear sampling method for non-absorbing penetrable elastic bodies, Inverse Problems, 19, 549-561, (2003) · Zbl 1029.35223 · doi:10.1088/0266-5611/19/3/305
[14] Colton, D.; Haddar, H.; Monk, P., The linear sampling method for solving the electromagnetic inverse scattering problem, SIAM J. Sci. Comput., 24, 719-731, (2002) · Zbl 1037.78008 · doi:10.1137/S1064827501390467
[15] Haddar, H.; Monk, P., The linear sampling method for solving the electromagnetic inverse medium problem, Inverse Problems, 18, 891-906, (2002) · Zbl 1006.35102 · doi:10.1088/0266-5611/18/3/323
[16] Xu, Y.; Mawata, C.; Lin, W., Generalized dual space indicator method for underwater imaging, Inverse Problems, 16, 1761-1776, (2000) · Zbl 0978.35099 · doi:10.1088/0266-5611/16/6/311
[17] Charalambopoulos, A.; Gintides, D.; Kiriaki, K.; Kirsch, A., The factorization method for an acoustic wave guide, 120-127, (2006) · Zbl 1106.76060
[18] Bourgeois, L.; Lunéville, E., The linear sampling method in a waveguide: a modal formulation, Inverse Problems, 24, (2008) · Zbl 1153.35400 · doi:10.1088/0266-5611/24/1/015018
[19] Monk, P.; Selgas, V., Sampling type methods for an inverse waveguide problem, Inverse Problems Imaging, 6, 709-747, (2012) · Zbl 1263.74023 · doi:10.3934/ipi.2012.6.709
[20] Borcea, L.; Nguyen, D-L, Imaging with electromagnetic waves in terminating waveguides, Inverse Problems Imaging, 10, 915-941, (2016) · Zbl 1348.35312 · doi:10.3934/ipi.2016027
[21] Cakoni, F.; Colton, D., The linear sampling method for cracks, Inverse Problems, 19, 279-295, (2003) · Zbl 1171.35487 · doi:10.1088/0266-5611/19/2/303
[22] Ben Hassen, F.; Boukari, Y.; Haddar, H., Application of the linear sampling method to identify cracks with impedance boundary conditions, Inverse Problems Sci. Eng., 21, 210-234, (2013) · Zbl 1267.78036 · doi:10.1080/17415977.2012.686997
[23] Pourahmadian, F.; Guzina, B. B.; Haddar, H., Generalized linear sampling method for elastic-wave sensing of heterogeneous fractures, Inverse Problems, 33, (2017) · Zbl 1469.74072 · doi:10.1088/1361-6420/33/5/055007
[24] Chen, Q.; Haddar, H.; Lechleiter, A.; Monk, P., A sampling method for inverse scattering in the time domain, Inverse Problems, 26, (2010) · Zbl 1197.35315 · doi:10.1088/0266-5611/26/8/085001
[25] Monk, P.; Selgas, V., An inverse acoustic waveguide problem in the time domain, Inverse Problems, 32, (2016) · Zbl 1397.76123 · doi:10.1088/0266-5611/32/5/055001
[26] Baronian, V.; Bourgeois, L.; Recoquillay, A., Imaging an acoustic waveguide from surface data in the time domain, Wave Motion, 66, 68-87, (2016) · Zbl 1467.76050 · doi:10.1016/j.wavemoti.2016.05.006
[27] Bourgeois, L.; Fliss, S., On the identification of defects in a periodic waveguide from far field data, Inverse Problems, 30, (2014) · Zbl 1303.78005 · doi:10.1088/0266-5611/30/9/095004
[28] Brezis, H., Functional Analysis, Sobolev Spaces and Partial Differential Equations, (2011) · Zbl 1220.46002
[29] Recoquillay, A., Méthodes d’échantillonnage appliquées à l’imagerie de défauts dans un guide d’ondes élastiques, PhD Thesis, (2018)
[30] Baronian, V.; Bonnet-Ben Dhia, A. S.; Lunéville, E., Transparent boundary conditions for the harmonic diffraction problem in an elastic waveguide, J. Comput. Appl. Math., 234, 1945-1952, (2010) · Zbl 1405.35121 · doi:10.1016/j.cam.2009.08.045
[31] Fraser, W. B., Orthogonality relation for the Rayleigh–Lamb modes of vibration of a plate, J. Acoust. Soc. Am., 59, 215-216, (1976) · Zbl 0324.73022 · doi:10.1121/1.380851
[32] Pagneux, V.; Maurel, A., Lamb wave propagation in elastic waveguides with variable thickness, Proc. R. Soc. A, 462, 1315-1339, (2006) · Zbl 1149.74348 · doi:10.1098/rspa.2005.1612
[33] Baronian, V., Couplage des méthodes modale et éléments finis pour la diffraction des ondes élastiques guidées, PhD Thesis, (2009)
[34] Bourgeois, L.; Lunéville, E., The linear sampling method in a waveguide: a formulation based on modes, J. Phys.: Conf. Ser., 135, (2008) · Zbl 1153.35400 · doi:10.1088/1742-6596/135/1/012023
[35] Colton, D.; Piana, M.; Potthast, R., A simple method using Morozov’s discrepancy principle for solving inverse scattering problems, Inverse Problems, 13, 1477-1493, (1997) · Zbl 0902.35123 · doi:10.1088/0266-5611/13/6/005
[36] Moitra, A., Super-resolution, extremal functions and the condition number of Vandermonde matrices, 821-830, (2015) · Zbl 1321.68421
[37] Imperiale, A.; Chatillon, S.; Calmon, P.; Leymarie, N.; Imperiale, S.; Demaldent, E., UT simulation of embedded parametric defects using a hybrid model based upon spectral finite element and domain decomposition methods, (2016)
[38] Jezzine, K., Approche modale pour la simulation globale des contrôles non-destructifs par ondes élastiques guidées, PhD Thesis, (2006)
[39] Royer, D.; Dieulesaint, E., Ondes élastiques dans les solides, Interaction of Mechanics and Mathematics, (1996), Masson, Paris
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.