×

On derivatives of Kato’s Euler system for elliptic curves. (English) Zbl 07918171

Summary: In this paper, we formulate a new conjecture concerning Kato’s Euler system for elliptic curves \(E\) over \(\mathbb{Q}\). This ‘Generalized Perrin-Riou Conjecture’ predicts a precise congruence relation between a Darmon-type derivative of the zeta element of \(E\) over an arbitrary real abelian field and the critical value of an appropriate higher derivative of the \(L\)-function of \(E\) over \(\mathbb{Q}\). We prove the conjecture specializes in the relevant case of analytic rank one to recover Perrin-Riou’s conjecture on the logarithms of zeta elements, and also that, under mild technical hypotheses, the ‘order of vanishing’ part of the conjecture is unconditionally valid in arbitrary rank. This approach also allows us to prove a natural higher-rank generalization of Rubin’s formula concerning derivatives of \(p\)-adic \(L\)-functions and to establish an explicit connection between the \(p\)-part of the classical Birch and Swinnerton-Dyer formula and the Iwasawa main conjecture in arbitrary rank and for arbitrary reduction at \(p\). In a companion article we prove that the approach developed here also provides a new interpretation of the Mazur-Tate conjecture that leads to the first (unconditional) theoretical evidence in support of this conjecture for curves of strictly positive rank.

MSC:

11G40 \(L\)-functions of varieties over global fields; Birch-Swinnerton-Dyer conjecture
11S40 Zeta functions and \(L\)-functions
14G10 Zeta functions and related questions in algebraic geometry (e.g., Birch-Swinnerton-Dyer conjecture)
11R23 Iwasawa theory

References:

[1] K. Barré-Sirieix, G. Diaz, F. Gramain and G. Philibert, Une preuve de la conjecture de Mahler-Manin, Invent. Math., 124 (1996), 1-9. · Zbl 0853.11059
[2] D. Benois, \(p\)-adic heights and \(p\)-adic Hodge theory, Mém. Soc. Math. Fr. (N.S.), 167 (2021), vi+135 pp.
[3] D. Benois and K. Büyükboduk, On the exceptional zeros of \(p\)-non-ordinary \(p\)-adic \(L\)-functions and a conjecture of Perrin-Riou, Trans. Amer. Math. Soc., 376 (2023), 231-284. · Zbl 1517.11070
[4] M. Bertolini, H. Darmon and R. Venerucci, Heegner points and Beilinson-Kato elements: a conjecture of Perrin-Riou, Adv. Math., 398 (2022), paper no. 108172. · Zbl 1495.11066
[5] D. Burns and M. Flach, Tamagawa numbers for motives with (non-commutative) coefficients, Doc. Math., 6 (2001), 501-570. · Zbl 1052.11077
[6] D. Burns, M. Kurihara and T. Sano, On zeta elements for \(\mathbb{G}_m \), Doc. Math., 21 (2016), 555-626. · Zbl 1407.11133
[7] D. Burns, M. Kurihara and T. Sano, On Iwasawa theory, zeta elements for \(\mathbb{G}_m\) and the equivariant Tamagawa number conjecture, Algebra Number Theory, 11 (2017), 1527-1571. · Zbl 1455.11158
[8] D. Burns, M. Kurihara and T. Sano, On Stark elements of arbitrary weight and their \(p\)-adic families, In: Development of Iwasawa Theory—the Centennial of K. Iwasawa’s Birth, Adv. Stud. Pure Math., 86, 2020, 113-140. · Zbl 1469.11458
[9] D. Burns, M. Kurihara and T. Sano, On derivatives of Kato’s Euler system and the Mazur-Tate Conjecture, submitted for publication, arXiv:2103.11535. arXiv: 2103.11535
[10] D. Burns, R. Sakamoto and T. Sano, On the theory of higher rank Euler, Kolyvagin and Stark systems, III: applications, preprint, arXiv:1902.07002. arXiv: 1902.07002
[11] D. Burns and T. Sano, On the theory of higher rank Euler, Kolyvagin and Stark systems, Int. Math. Res. Not. IMRN, 2021 (2021), 10118-10206. · Zbl 1496.11132
[12] K. Büyükboduk, On Nekovář’s heights, exceptional zeros and a conjecture of Mazur-Tate-Teitelbaum, Int. Math. Res. Not. IMRN, 2016 (2016), 2197-2237. · Zbl 1404.11056
[13] K. Büyükboduk, Beilinson-Kato and Beilinson-Flach elements, Coleman-Rubin-Stark classes, Heegner points and a conjecture of Perrin-Riou, In: Development of Iwasawa Theory—the Centennial of K. Iwasawa’s Birth, Adv. Stud. Pure Math., 86, 2020, 141-193. · Zbl 1473.11119
[14] K. Büyükboduk, R. Pollack and S. Sasaki, \(p\)-adic Gross-Zagier formula at critical slope and a conjecture of Perrin-Riou, preprint, arXiv:1811.08216. arXiv: 1811.08216
[15] H. Darmon, A refined conjecture of Mazur-Tate type for Heegner points, Invent. Math., 110 (1992), 123-146. · Zbl 0781.11023
[16] H. Darmon, Thaine’s method for circular units and a conjecture of Gross, Canad. J. Math., 47 (1995), 302-317. · Zbl 0844.11071
[17] T. Fukaya and K. Kato, A formulation of conjectures on \(p\)-adic zeta functions in noncommutative Iwasawa theory, In: Proceedings of the St. Petersburg Mathematical Society, Volume XII, Amer. Math. Soc. Transl. Ser. 2, 219, 2006, 1-85. · Zbl 1238.11105
[18] T. Fukaya and K. Kato, On conjectures of Sharifi, preprint, 2012.
[19] R. Greenberg, Iwasawa theory for \(p\)-adic representations, In: Algebraic Number Theory, Adv. Stud. Pure Math., 17, Academic Press, Boston, MA, 1989, 97-137. · Zbl 0739.11045
[20] R. Greenberg and G. Stevens, \(p\)-adic \(L\)-functions and \(p\)-adic periods of modular forms, Invent. Math., 111 (1993), 407-447. · Zbl 0778.11034
[21] J. W. Jones, Iwasawa \(L\)-functions for multiplicative abelian varieties, Duke Math. J., 59 (1989), 399-420. · Zbl 0716.14008
[22] K. Kato, Lectures on the approach to Iwasawa theory for Hasse-Weil \(L\)-functions via \(B_{\text{dR}} \). Part I, In: Arithmetic Algebraic Geometry, (ed. E. Ballico), Lecture Notes in Math., 1553, Springer, New York, 1993, 50-163. · Zbl 0815.11051
[23] K. Kato, \(p\)-adic Hodge theory and values of zeta functions of modular forms, Cohomologies \(p\)-adiques et applications arithmétiques. III, Astérisque, 295 (2004), 117-290. · Zbl 1142.11336
[24] G. Kings, The equivariant Tamagawa number conjecture and the Birch-Swinnerton-Dyer conjecture, In: Arithmetic of \(L\)-functions, IAS/Park City Math. Ser., 18, Amer. Math. Soc., Providence, RI, 2011, 315-349. · Zbl 1277.11073
[25] S. Kobayashi, An elementary proof of the Mazur-Tate-Teitelbaum conjecture for elliptic curves, Doc. Math., Extra Vol. (2006), 567-575. · Zbl 1138.11022
[26] S. Kobayashi, The \(p\)-adic Gross-Zagier formula for elliptic curves at supersingular primes, Invent. Math., 191 (2013), 527-629. · Zbl 1300.11053
[27] M. Kurihara, On the Tate Shafarevich groups over cyclotomic fields of an elliptic curve with supersingular reduction I, Invent. Math., 149 (2002), 195-224. · Zbl 1033.11028
[28] B. Mazur and K. Rubin, Refined class number formulas for \(\mathbb{G}_m \), J. Théor. Nombres Bordeaux, 28 (2016), 185-211. · Zbl 1414.11155
[29] B. Mazur and J. Tate, Refined conjectures of the “Birch and Swinnerton-Dyer type”, Duke Math. J., 54 (1987), 711-750. · Zbl 0636.14004
[30] B. Mazur, J. Tate and J. Teitelbaum, On \(p\)-adic analogues of the conjectures of Birch and Swinnerton-Dyer, Invent. Math., 84 (1986), 1-48. · Zbl 0699.14028
[31] J. Nekovář, On \(p\)-adic height pairings, In: Séminaire de Théorie des Nombres, Paris, 1990-1991, Progr. Math., 108, Birkhäuser Boston, Boston, 1993, 127-202. · Zbl 0859.11038
[32] J. Nekovář, Selmer complexes, Astérisque, 310 (2006). · Zbl 1211.11120
[33] B. Perrin-Riou, Points de Heegner et dérivées de fonctions \(L p\)-adiques, Invent. Math., 89 (1987), 455-510. · Zbl 0645.14010
[34] B. Perrin-Riou, Fonctions \(L p\)-adiques d’une courbe elliptique et points rationnels, Ann. Inst. Fourier (Grenoble), 43 (1993), 945-995. · Zbl 0840.11024
[35] J. Pottharst, Analytic families of finite slope Selmer groups, Algebra Number Theory, 7 (2013), 1571-1612. · Zbl 1370.11123
[36] K. Rubin, Abelian varieties, \(p\)-adic heights and derivatives, In: Algebra and Number Theory (Essen, 1992), Walter de Gruyter, Berlin, 1994, 247-266. · Zbl 0829.11034
[37] K. Rubin, Euler systems and modular elliptic curves, In: Galois Representations in Arithmetic Algebraic Geometry, London Math. Soc. Lecture Note Ser., 254, Cambridge Univ. Press, 1998, 351-367. · Zbl 0952.11016
[38] R. Sakamoto, The theory of Kolyvagin systems for \(p = 3\), preprint.
[39] T. Sano, Refined abelian Stark conjectures and the equivariant leading term conjecture of Burns, Compositio Math., 150 (2014), 1809-1835. · Zbl 1311.11108
[40] P. Schneider, \(p\)-adic height pairings I, Invent. Math., 69 (1982), 401-409. · Zbl 0509.14048
[41] P. Schneider, Iwasawa \(L\)-functions of varieties over algebraic number fields. A first approach, Invent. Math., 71 (1983), 251-293. · Zbl 0511.14010
[42] A. J. Scholl, An introduction to Kato’s Euler systems, In: Galois Representations in Arithmetic Algebraic Geometry, (eds. A. J. Scholl and R. L. Taylor), London Math. Soc. Lecture Note Ser., 254, Cambridge Univ. Press, 1998, 379-460. · Zbl 0952.11015
[43] D. Solomon, On a construction of \(p\)-units in abelian fields, Invent. Math., 109 (1992), 329-350. · Zbl 0772.11043
[44] R. Venerucci, \(p\)-adic regulators and \(p\)-adic families of modular forms, Ph.D. thesis, Univ. degli Studi di Milano, (2013).
[45] R. Venerucci, Exceptional zero formulae and a conjecture of Perrin-Riou, Invent. Math., 203 (2016), 923-972. · Zbl 1406.11060
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.