×

Fault-tolerant spacecraft attitude control under actuator saturation and without angular velocity. (English) Zbl 1447.93076

Summary: In this paper, a fault-tolerant control scheme is proposed to control the attitude of a rigid spacecraft subject to external disturbances and multiple system uncertainties, as well as actuator faults and saturation. More challengingly, it is assumed that the angular velocity is unavailable. A super-twisting observer with time-varying gain is firstly designed to accurately estimate the angular velocity in finite time. The choice of the time-varying gain is dependent on a state-norm estimate. Then, using the information from the observer (estimate of angular velocity), a fault-tolerant controller is proposed, where an adaptive law is introduced to address the unknown loss of effectiveness and neural networks are used to approximate the unknown nonlinear functions. It is proved that the attitude orientations converge to the desired values at a fixed time. Finally, a simulation example is utilized to verify the effectiveness of the proposed scheme.

MSC:

93B35 Sensitivity (robustness)
93C95 Application models in control theory
93B52 Feedback control
Full Text: DOI

References:

[1] HuQ, ShiY, ShaoX. Adaptive fault‐tolerant attitude control for satellite reorientation under input saturation. Aerosp Sci Technol. 2018;78:171‐182.
[2] ShenZ, MaY, SongY. Robust adaptive fault‐tolerant control of mobile robots with varying center of mass. IEEE Trans Ind Electron. 2018;65(3):2419‐2428.
[3] LiaoF, WangJL, YangGH. Reliable robust flight tracking control: an LMI approach. IEEE Trans Control Syst Technol. 2002;10:76‐89.
[4] ZhaoQ, JiangJ. Reliable state feedback control system design against actuator failures. Automatica. 1998;34:1267‐1272. · Zbl 0938.93523
[5] HuQ, ShaoX, ZhangY, GuoL. Nussbaum‐type function-based attitude control of spacecraft with actuator saturation. Int J Robust Nonlinear Control. 2018;28(8):2927‐2949. · Zbl 1391.93187
[6] LiB, HuQ, YuY, MaG. Observer‐based fault‐tolerant attitude control for rigid spacecraft. IEEE Trans Aerosp Electron Syst. 2017;53(5):2572‐2582.
[7] XiaoB, YinS. An intelligent actuator fault reconstruction scheme for robotic manipulators. IEEE Trans Cybern. 2018;48(2):639‐647.
[8] DongQ, ZongQ, TianB, ZhangC, LiuW. Adaptive disturbance observer based finite‐time continuous fault‐tolerant control for reentry RLV. Int J Robust Nonlinear Control. 2017;27(18):4275‐4295. · Zbl 1379.93036
[9] SafaA, BaradaranniaM, KharratiH, KhanmohammadiS. Robust attitude tracking control for a rigid spacecraft under input delays and actuator errors. Int J Control. 2019;92:1183‐1195. · Zbl 1416.93059
[10] YuX, LiuZ, ZhangY. Fault‐tolerant formation control of multiple UAVs in the presence of actuator faults. Int J Robust Nonlinear Control. 2016;26(12):2668‐2685. · Zbl 1346.93046
[11] HuQ, ShaoX, ChenW‐H. Robust fault‐tolerant tracking control for spacecraft proximity operations using time‐varying sliding‐mode. IEEE Trans Aerosp Electron Syst. 2018;54(1):2‐17.
[12] GuiH, VukovichG. Adaptive fault tolerant spacecraft attitude control using a novel integral terminal sliding‐mode. Int J Robust Nonlinear Control. 2017;27(16):3174‐3196. · Zbl 1386.93158
[13] AvramRC, ZhangX, MuseJ. Nonlinear adaptive fault‐tolerant quadrotor altitude and attitude tracking with multiple actuator faults. IEEE Trans Control Syst Technol. 2018;26(2):701‐707.
[14] ZhangY, TangS, GuoJ. Adaptive‐gain fast super‐twisting sliding‐mode fault tolerant control for a reusable launch vehicle in reentry phase. ISA Transactions. 2017;71:380‐390.
[15] WangX, AboutaniosE, TrinkleM, AminMG. Reconfigurable adaptive array beamforming by antenna selection. IEEE Trans Signal Process. 2014;62(9):2385‐2396. · Zbl 1394.94629
[16] AminMG, WangX, ZhangY, AhmadF, AboutaniosE. Sparse arrays and sampling for interference mitigation and DOA estimation in GNSS. Proc IEEE. 2016;104(6):1302‐1317.
[17] WangX, AboutaniosE, AminMG. Slow radar target detection in heterogeneous clutter using thinned space-time adaptive processing. IET Radar, Sonar & Navigation. 2016;10(4):726‐734.
[18] ZouA‐M, KumarKD. Robust attitude coordination control for spacecraft formation flying under actuator failures. J Guid Control Dyn. 2012;35(4):1247‐1255.
[19] ShenQ, YueC, GohCH, WuB, WangD. Rigid‐body attitude tracking control under actuator faults and angular velocity constraints. IEEE/ASME Trans Mechatron. 2018;23(3):1338‐1349.
[20] YinS, XiaoB, DingSX, ZhouD. A review on recent development of spacecraft attitude fault tolerant control system. IEEE Trans Ind Electron. 2016;63(5):3311‐3320.
[21] XiaoB, HuQ, ZhangY. Fault‐tolerant attitude control for flexible spacecraft without angular velocity magnitude measurement. J Guid Control Dyn. 2011;34(5):1556‐1561.
[22] CosticBT, DawsonDM, deQueirozMS, KapilaV. Quaternion‐based adaptive attitude tracking controller without velocity measurements. J Guid Control Dyn. 2001;24(6):1214‐1222.
[23] XiaoB, YinS. Velocity‐free fault‐tolerant and uncertainty attenuation control for a class of nonlinear systems. IEEE Trans Ind Electron. 2016;63(7):4400‐4411.
[24] XiaoB, HuQ, ZhangY, HuoX. Fault‐tolerant tracking control of spacecraft with attitude‐only measurement under actuator failures. J Guid Control Dyn. 2014;37(3):838‐849.
[25] XiaoB, HuoM, YangX, ZhangY. Fault‐tolerant attitude stabilization for satellites without rate sensor. IEEE Trans Ind Electron. 2015;62(11):7191‐7202.
[26] HuoB, XiaY, YinL, FuM. Fuzzy adaptive fault‐tolerant output feedback attitude‐tracking control of rigid spacecraft. IEEE Trans Syst Man Cybern Syst. 2017;47(8):1898‐1908.
[27] CaoL, QiaoD, ChenX. Laplace l_1 Huber based cubature Kalman filter for attitude estimation of small satellite. Acta Astronautica. 2018;148:48‐56.
[28] XiaoB, YinS. Exponential tracking control of robotic manipulators with uncertain dynamics and kinematics. IEEE Trans Ind Inform. 2019;15(2):689‐698.
[29] KhatibiM, HaeriM. A unified framework for passive-active fault‐tolerant control systems considering actuator saturation and l_∞ disturbances. Int J Control. 2019;92:653‐663. · Zbl 1414.93078
[30] XuB, GuoY, YuanY, WangD. Fault‐tolerant control using command‐filtered adaptive back‐stepping technique: application to hypersonic longitudinal flight dynamics. Int J Adapt Control Signal Process. 2016;30(4):553‐577.
[31] MengY, JiangB, QiR, LiuJ. Fault‐tolerant anti‐windup control for hypersonic vehicles in reentry based on ISMDO. J Frankl Inst. 2018;355(5):2067‐2090. · Zbl 1393.93028
[32] AnH, FidanB, LiuJ, WangC, WuL. Adaptive fault‐tolerant control of air‐breathing hypersonic vehicles robust to input nonlinearities. Int J Control. 2019;92:1044‐1060. · Zbl 1416.93099
[33] BaiY, BiggsJD, WangX, CuiN. Attitude tracking with an adaptive sliding‐mode response to reaction wheel failure. Eur J Control. 2018;42:67‐76. · Zbl 1403.93113
[34] GaoM, YaoJ. Finite‐time h_∞ adaptive attitude fault‐tolerant control for reentry vehicle involving control delay. Aerosp Sci Technol. 2018;79:246‐254.
[35] LanJ, PattonRJ, ZhuX. Integrated fault‐tolerant control for a 3‐DOF helicopter with actuator faults and saturation. IET Control Theory Appl. 2017;11(14):2232‐2241.
[36] ShenQ, YueC, GohCH, WangD. Active fault‐tolerant control system design for spacecraft attitude maneuvers with actuator saturation and faults. IEEE Trans Ind Electron. 2019;66(5):3763‐3772.
[37] LevantA. Robust exact differentiation via sliding‐mode technique. Automatica. 1998;34(3):379‐384. · Zbl 0915.93013
[38] NageshI, EdwardsC. A multivariable super‐twisting sliding‐mode approach. Automatica. 2014;50(3):984‐988. · Zbl 1298.93108
[39] HaimovichH, De BattistaH. Disturbance‐tailored super‐twisting algorithms: properties and design framework. Automatica. 2019;101:318‐329. · Zbl 1415.93075
[40] MurugesanS, GoelPS. Fault tolerant spacecraft attitude control system. Sadhana. 1987;11(1‐2):233‐261.
[41] WangC‐C, YangG‐H. Adaptive decentralized fault‐tolerant tracking control for large‐scale nonlinear systems with input quantization. Int J Robust Nonlinear Control. 2018;28(9):3342‐3356. · Zbl 1396.93011
[42] BhatSP, BernsteinDS. Finite‐time stability of continuous autonomous systems. SIAM J Control Optim. 2000;38(3):751‐766. · Zbl 0945.34039
[43] KhalilHK. Nonlinear Systems. 3rd ed. Beijing, China:Publishing House of Electronics Industry; 2007.
[44] YadegarM, AfsharA, MeskinN. Fault‐tolerant control of non‐linear systems based on adaptive virtual actuator. IET Control Theory Appl. 2017;11(9):1371‐1379.
[45] PometJ‐B, PralyL. Adaptive nonlinear regulation: estimation from the Lyapunov equation. IEEE Trans Autom Control. 1992;37(6):729‐740. · Zbl 0755.93071
[46] YucelenT, HaddadWM. Output feedback adaptive stabilization and command following for minimum phase dynamical systems with unmatched uncertainties and disturbances. Int J Control. 2012;85(6):706‐721. · Zbl 1256.93092
[47] LiY, TongS. Adaptive neural networks decentralized FTC design for nonstrict‐feedback nonlinear interconnected large‐scale systems against actuator faults. IEEE Trans Neural Netw Learn Syst. 2017;28(11):2541‐2554.
[48] HuQ, LiB, ZhangY. Nonlinear proportional‐derivative control incorporating closed‐loop control allocation for spacecraft. J Guid Control Dyn. 2014;37(3):799‐812.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.