×

Disturbance-tailored super-twisting algorithms: properties and design framework. (English) Zbl 1415.93075

Summary: Second- and higher-order sliding mode techniques are able to avoid the chattering effect associated with first-order sliding. The super-twisting algorithm is one of the most popular second-order sliding mode techniques. Existing modifications of the super-twisting algorithm allow for improved disturbance rejection capability. In this paper, we introduce a new class of generalizations of the super-twisting algorithm that are able to keep the main advantages of standard super-twisting while rejecting disturbances bounded in forms for which the existing algorithms may be not directly applicable. Our results thus broaden the applicability of second-order sliding-mode techniques. We give conditions for stability and finite-time convergence, and provide a complete design framework based on given disturbance bounds.

MSC:

93B12 Variable structure systems
93B35 Sensitivity (robustness)
93D20 Asymptotic stability in control theory
Full Text: DOI

References:

[1] Castillo, I.; Fridman, L.; Moreno, J. A., Super-twisting algorithm in presence of time and state dependent perturbations, International Journal of Control (2017) · Zbl 1403.93062
[2] Clarke, F. H.; Ledyaev, Y. S.; Stern, R. J., Asymptotic stability and smooth Lyapunov functions, Journal of Differential Equations, 149, 1, 69-114 (1998) · Zbl 0907.34013
[3] Cruz-Zavala, E.; Moreno, J. A., Homogeneous high-order sliding mode design: a Lyapunov approach, Automatica, 80, 232-238 (2017) · Zbl 1370.93073
[4] Davila, J.; Fridman, L.; Levant, A., Second-order sliding-mode observer for mechanical systems, IEEE Transactions on Automatic Control, 50, 11, 1785-1789 (2005) · Zbl 1365.93071
[5] Emel’yanov, S. V.; Korovin, S. K.; Levant, A., High-order sliding modes in control systems, Computational Mathematics and Modeling, 7, 3, 294-318 (1996)
[6] Filippov, A. F., Differential equations with discontinuous righthand sides (1988), Kluwer Academic Publishers · Zbl 0664.34001
[7] Sliding modes after the first decade of the 21st century: state of the art, (Fridman, L.; Moreno, J.; Iriarte, R., Lecture notes in control and information sciences (2011), Springer)
[8] Haimovich, H.; De Battista, H., Disturbance-tailored super-twisting algorithms, (XVII Reunión de trabajo en procesamiento de la información y control (RPIC) (2017), Mar del Plata: Mar del Plata Argentina)
[9] Jakovljevic, B.; Pisano, A.; Rapaic, M. R.; Usai, E., On the sliding-mode control of fractional-order nonlinear uncertain dynamics, International Journal of Robust and Nonlinear Control, 26, 4, 782-798 (2016) · Zbl 1333.93071
[10] Levant, A., Sliding order and sliding accuracy in sliding mode control, International Journal of Control, 58, 6, 1247-1263 (1993) · Zbl 0789.93063
[11] Levant, A., Robust exact differentiation via sliding mode technique, Automatica, 34, 3, 379-384 (1998) · Zbl 0915.93013
[12] Levant, A., Universal single-input single-output (siso) sliding-mode controllers with finite-time convergence, IEEE Transactions on Automatic Control, 46, 9, 1447-1451 (2001) · Zbl 1001.93011
[13] Levant, A., Homogeneity approach to high-order sliding mode design, Automatica, 41, 823-830 (2005) · Zbl 1093.93003
[14] Moreno, J. A., A linear framework for the robust stability analysis of a generalized super-twisting algorithm, (6th Int’l Conf. on electrical engineering, computing science and automatic control (CCE) (2009))
[15] Moreno, J. A., On strict Lyapunov functions for some non-homogeneous super-twisting algorithms, Journal of the Franklin Institute, 351, 1902-1919 (2014) · Zbl 1372.93177
[16] Moreno, J. A.; Osorio, M., A Lyapunov approach to second-order sliding mode controllers and observers, (Proc. 47th IEEE Conf. on decision and control (2008)), 2856-2861
[17] Moreno, J. A.; Osorio, M., Strict Lyapunov functions for the super-twisting algorithm, IEEE Transactions on Automatic Control, 57, 4, 1035-1040 (2012) · Zbl 1369.93568
[18] Picó, J.; Picó-Marco, E.; Vignoni, A.; De Battista, H., Stability preserving maps for finite-time convergence: Super-twisting sliding-mode algorithm, Automatica, 49, 2, 534-539 (2013) · Zbl 1259.93036
[19] Polyakov, A.; Efimov, D.; Perruquetti, W., Finite-time and fixed-time stabilization: implicit Lyapunov function approach, Automatica, 51, 332-340 (2015) · Zbl 1309.93135
[20] Polyakov, A.; Poznyak, A., Lyapunov function design for finite-time convergence analysis: twisting controller for second-order sliding mode realization, Automatica, 45, 444-448a (2009) · Zbl 1158.93401
[21] Polyakov, A.; Poznyak, A., Reaching time estimation for super-twisting second order sliding mode controller via Lyapunov function designing, IEEE Transactions on Automatic Control, 54, 8, 1951-1955b (2009) · Zbl 1367.93127
[22] Poznyak, A., Stochastic super-twist sliding mode controller, IEEE Transactions on Automatic Control (2017) · Zbl 1395.93513
[23] Riachy, S.; Orlov, Y.; Floquet, T.; Santiesteban, R.; Richard, J.-P., Second-order sliding mode control of underactuated mechanical systems I: Local stabilization with application to an inverted pendulum, International Journal of Robust and Nonlinear Control, 18, 4-5, 529-543 (2008) · Zbl 1284.93064
[24] Saif, M.; Chen, W.; Wu, Q., (Modern sliding mode control theory. Chapter high order sliding mode observers and differentiators-application to fault diagnosis problem. Modern sliding mode control theory. Chapter high order sliding mode observers and differentiators-application to fault diagnosis problem, Lecture notes in control and information sciences (2008), Springer), 321-344 · Zbl 1145.93315
[25] Seeber, R.; Reichhartinger, M.; Horn, M., A Lyapunov function for an extended super-twisting algorithm, IEEE Transactions on Automatic Control (2018) · Zbl 1423.93083
[26] Shtessel, Y.; Edwards, C.; Fridman, L.; Levant, A., Sliding mode control and observation (2014), Springer
[27] Utkin, V. I., Variable structure systems with sliding modes, IEEE Transactions on Automatic Control, AC-22, 2, 212-222 (1977) · Zbl 0382.93036
[28] Vladimir, I., Bogachev (2007), Measure Theory: Measure Theory Volume I. Springer
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.