×

Closed-form solutions for two collinear dielectric cracks in a magnetoelectroelastic solid. (English) Zbl 1219.74042

Summary: The problem of two collinear electromagnetically dielectric cracks in a magnetoelectroelastic material is investigated under in-plane electro-magneto-mechanical loadings. The semi-permeable crack-face boundary conditions are adopted to simulate the case of two collinear cracks full of a dielectric interior. Utilizing the Fourier transform technique, the boundary-value problem is reduced to solving singular integral equations with Cauchy kernel, which then are solved explicitly. The intensity factors of stress, electric displacement, magnetic induction, crack opening displacement (COD) and the energy release rates near the inner and outer crack tips are determined in closed forms for two cases of possible far-field electro-magneto-mechanical loadings respectively. Numerical results for a BaTiO\(_3\)-CoFe\(_2\)O\(_4\) composite are carried out to show the effects of applied mechanical loadings on the crack-face electric displacement and magnetic induction, the stress intensity factor and the COD intensity factor, respectively. The obtained results reveal that when the applied mechanical loading is stress, applied electromagnetic loadings have no influences on the stress intensity factor. When the applied mechanical loadings is train, the applied positive electromagnetic loadings decrease the intensity factors of stress and COD, and the applied negative ones increase the intensity factors of stress and COD. The variations of energy release rates are also given to show the effects of the geometry of two collinear dielectric cracks.

MSC:

74R10 Brittle fracture
74F15 Electromagnetic effects in solid mechanics
74E30 Composite and mixture properties
45E99 Singular integral equations
Full Text: DOI

References:

[1] Nan, C. W.; Bichurin, M. I.; Dong, S. X., Multiferroic magnetoelectric composites: historical perspective, status, and future directions, J. Appl. Phys., 103, 031101 (2008)
[2] Li, J. Y., Magnetoelectroelastic multi-inclusion and inhomogeneity problems and their applications in composite materials, Int. J. Eng. Sci., 38, 1993-2011 (2000)
[3] Aboudi, J., Micromechanical analysis of fully coupled electro-magneto-thermo-elastic multiphase composites, Smart Mater. Struct., 10, 867-877 (2001)
[4] Sue, W. C.; Liou, J. Y.; Sung, J. C., Investigation of the stress singularity of a magnetoelectroelastic bonded antiplane wedge, Appl. Math. Model., 31, 2313-2331 (2007) · Zbl 1129.74019
[5] Zhu, B. J.; Qin, T. Y., 3D modeling of crack growth in electro-magneto-thermo-elastic coupled viscoplastic multiphase composites, Appl. Math. Model., 33, 1014-1041 (2009) · Zbl 1168.74442
[6] Altay, G.; Dokmeci, M. C., On the fundamental equations of electromagnetoelastic media in variational form with an application to shell/laminae equations, Int. J. Solids Struct., 47, 466-492 (2010) · Zbl 1183.74066
[7] Buchanan, G. R., Layered versus multiphase magneto-electro-elastic composites, Composites: Part B, 35, 413-420 (2004)
[8] Chen, W. Q.; Lee, K. Y.; Ding, H. J., On free vibration of non-homogeneous transversely isotropic magneto-electro-elastic plates, J. Sound Vib., 279, 237-251 (2005)
[9] Pan, E., Exact solution for simply supported and multilayered magnet-electro-elastic plates, ASME J. Appl. Mech., 68, 608-618 (2001) · Zbl 1110.74612
[10] Sih, G. C.; Jones, R.; Song, Z. F., Piezomagnetic and piezoelectric poling effects on mode I and II crack initiation behavior of magnetoelectroelastic materials, Theor. Appl. Fract. Mech., 40, 161-186 (2003)
[11] Liu, J. X.; Liu, X. L.; Zhao, Y. B., Green’s functions for anistropic magnetoelectroelastic solids with an elliptical cavity or a crack, Int. J. Eng. Sci., 39, 1405-1418 (2001) · Zbl 1210.74073
[12] Wang, B. L.; Mai, Y. W., Crack tip field in piezoelectric/piezomagnetic media, Eur. J. Mech. A/Solids, 22, 591-602 (2003) · Zbl 1032.74641
[13] Gao, C. F.; Kessler, H.; Balke, H., Crack problems in magnetoelectroelastic solids. Part I: exact solution of a crack, Int. J. Eng. Sci., 41, 969-981 (2003) · Zbl 1211.74187
[14] Gao, C. F.; Tong, P.; Zhang, T. Y., Fracture mechanics for a mode III crack in a magnetoelectroelastic solid, Int. J. Solids Struct., 41, 6613-6629 (2004) · Zbl 1179.74117
[15] Li, R.; Kardomateas, G. A., The mode III interface crack in piezo-electro-magneto-elastic dissimilar bimaterials, ASME J. Appl. Mech., 73, 220-227 (2006) · Zbl 1111.74509
[16] Zhong, X. C.; Li, X. F., Closed-form solution for an eccentric anti-plane shear crack normal to the edges of a magnetoelectroelastic strip, Acta Mech., 186, 1-15 (2006) · Zbl 1106.74054
[17] Tupholme, G. E., Shear crack in a transversely isotropic magnetoelectroelastic half-space, Mech. Res. Commun., 35, 466-474 (2008) · Zbl 1258.74193
[18] Chen, W. Q.; Lee, K. Y.; Ding, H. J., General solution for transversely isotropic magneto-electro-thermo-elasticity and the potential theory method, Int. J. Eng. Sci., 42, 1361-1379 (2004) · Zbl 1211.74062
[19] Zhong, X. C.; Li, X. F., Magnetoelectroelastic analysis for an opening crack in a piezoelectromagnetic solid, Eur. J. Mech. A/Solids, 26, 405-417 (2007) · Zbl 1150.74044
[20] Feng, W. J.; Su, R. K.L.; Pan, E., Fracture analysis of a penny-shaped magnetically dielectric crack in a magnetoelectroelastic material, Int. J. Fract., 146, 125-138 (2007) · Zbl 1198.74070
[21] Zhong, X. C.; Li, X. F., Fracture analysis of a magnetoelectroelastic solid with a penny-shaped crack by considering the effects of the opening crack interior, Int. J. Eng. Sci., 46, 374-390 (2008) · Zbl 1213.74275
[22] Zhao, M. H.; Fan, F.; Liu, T., Analysis of a penny-shaped crack in a magneto-electro-elastic medium, Phil. Mag., 86, 4397-4416 (2006)
[23] Gao, C. F.; Kessler, H.; Balke, H., Crack problems in magnetoelectroelastic solids. Part II: general solution of collinear cracks, Int. J. Eng. Sci., 41, 983-994 (2003) · Zbl 1211.74188
[24] Tian, W. Y.; Gabbert, U., Multiple crack interaction problem in magnetoelectroelastic solids, Eur. J. Mech. A/Solids, 23, 599-614 (2004) · Zbl 1062.74044
[25] Singh, B. M.; Rokne, J.; Dhaliwal, R. S., Closed-form solutions for two anti-plane collinear cracks in a magnetoelectroelastic layer, Eur. J. Mech. A/Solids, 28, 599-609 (2009) · Zbl 1158.74456
[26] Li, Y. D.; Lee, K. Y., Collinear unequal crack series in magnetoelectroelastic materials: Mode I case solved via new real fundamental solutions, Eng. Fract. Mech., 77, 2772-2790 (2010)
[27] Hao, T. H.; Shen, Z. Y., A new electric boundary condition of electric fracture mechanics and its application, Eng. Fract. Mech., 47, 793-802 (1994)
[28] McMeeking, R. M., Crack tip energy release rate for a piezoelectric compact tension specimen, Eng. Fract. Mech., 47, 793-802 (1999)
[29] Schneider, G. A.; Felten, F.; McMeeking, R. M., The electrical potential difference across cracks in PZT measured by Kelvin Probe Microscopy and implications for fracture, Acta Mater., 51, 2235-2241 (2003)
[30] Wang, B. L.; Mai, Y. W., Applicability of the crack-face electromagnetic boundary conditions for fracture of magnetoelectroelastic materials, Int. J. Solids Struct., 44, 387-398 (2007) · Zbl 1178.74145
[31] Wang, B. L.; Sun, Y. G.; Zhang, H. Y., Analysis of a penny-shaped crack in magnetoelectroelastic materials, J. Appl. Phys., 103, 083530 (2008)
[32] Zhou, Z. G.; Zhang, P. W.; Wu, L. Z., Solutions to a limited-permeable crack or two limited-permeable collinear cracks in piezoelectric/piezomagnetic materials, Arch. Appl. Mech., 77, 861-882 (2007) · Zbl 1161.74481
[33] Walker, R. L., The Theory of Fourier Series and Integrals (1986), John Wiley and Sons · Zbl 0585.42001
[34] Li, X. F.; Lee, K. Y., Crack growth in a piezoelectric material with a Griffith crack perpendicular to the poling axis, Phil. Mag., 84, 1789-1820 (2004)
[35] Hao, T. H., Multiple collinear cracks in a piezoelectric material, Int. J. Solids Struct., 38, 9201-9208 (2001) · Zbl 0999.74099
[36] Zhong, X. C.; Liu, F.; Li, X. F., Transient response of a magnetoelectroelastic solid with two collinear dielectric cracks under impacts, Int. J. Solids Struct., 46, 2950-2958 (2009) · Zbl 1167.74414
[37] H. Tada, P.C. Paris, G.R. Irwin, The Stress Analysis of Cracks Handbook, Del Research Corp., Hellertown, Pennsylvania, 1973.; H. Tada, P.C. Paris, G.R. Irwin, The Stress Analysis of Cracks Handbook, Del Research Corp., Hellertown, Pennsylvania, 1973.
[38] Wang, H.; Singh, R. N., Crack propagation in piezoelectric ceramics: effects of applied electric fields, J. Appl. Phys., 81, 7471-7479 (1997)
[39] Kumar, S.; Singh, R. N., Effect of the mechanical boundary condition at the crack surfaces on the stress distribution at the crack tip in piezoelectric materials, Mater. Sci. Eng. A, 252, 64-77 (1998)
[40] Li, X. F., Dynamic analysis of a cracked magnetoelectroelastic medium under antiplane mechanical and inplane electric and magnetic impacts, Int. J. Solids Struct., 42, 3185-3205 (2005) · Zbl 1142.74014
[41] Feng, W. J.; Pan, E.; Wang, X., Dynamic fracture analysis of a penny-shaped crack in a magnetoelectroelastic layer, Int. J. Solids Struct., 44, 7955-7974 (2007) · Zbl 1167.74548
[42] Park, S.; Sun, C. T., Fracture criteria for piezoelectric ceramics, J. Am. Ceram. Soc., 78, 1475-1480 (1995)
[43] Wells, A. A., Application of fracture mechanics at and beyond general yielding, British Weld. Journ., 10, 563-570 (1963)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.