×

Fracture analysis of a magnetoelectroelastic solid with a penny-shaped crack by considering the effects of the opening crack interior. (English) Zbl 1213.74275

Summary: A magnetoelectroelastic analysis for a penny-shaped crack embedded in an infinite piezoelectromagnetic material is made. Taking into account the fact that electric and magnetic fields can permeate through the opening crack, the electric and magnetic boundary conditions at the crack surfaces are assumed to be semi-permeable, or depend nonlinearly on the crack opening displacement. For the case of a circular crack normal to the poling direction, the associated mixed boundary value problem is reduced to solving dual integral equations by applying the Hankel transform technique. An entire magnetoelectroelastic field is obtained in simple and explicit form. Numerical results for a cracked \(BaTiO_{3}-CoFe_{2}O_{4}\) material reveal the dependence of the electric displacement and magnetic induction at the crack surfaces with applied mechanical loading. The influences of applied electric and magnetic loadings on normalized fracture parameters are illustrated graphically for a vacuum circular crack. The impermeable and permeable cracks can be treated as two limiting cases of the present.

MSC:

74R10 Brittle fracture
74F15 Electromagnetic effects in solid mechanics
Full Text: DOI

References:

[1] Chen, W. Q.; Lee, K. Y.; Ding, H. J., General solution for transversely isotropic magneto-electro-thermo-elasticity and the potential theory method, Int. J. Eng. Sci., 42, 1361-1379 (2004) · Zbl 1211.74062
[2] Fabrikant, V. I., Computation of infinite integrals involving three Bessel functions by introduction of new formalism, ZAMM, 83, 363-373 (2003) · Zbl 1022.65023
[3] Fan, T. Y., Foundation of Fracture Mechanics (1978), Jiangsu Sci-Tech Press: Jiangsu Sci-Tech Press Nanjing, (in Chinese)
[4] Feng, W. J.; Xue, Y.; Zou, Z. Z., Crack growth of an interface crack between two dissimilar magnetoelectroelastic materials under anti-plane mechanical and in-plane electric magnetic impact, Theor. Appl. Fract. Mech., 43, 376-394 (2005)
[5] Gao, C.-F.; Kessler, H.; Balke, H., Crack problems in magnetoelectroelastic solids. Part II: general solutions of collinear cracks, Int. J. Eng. Sci., 41, 983-994 (2003) · Zbl 1211.74188
[6] Gao, C.-F.; Tong, P.; Zhang, T.-Y., Interfacial crack problems in magneto-electroelastic solids, Int. J. Eng. Sci., 41, 2105-2121 (2003)
[7] Hao, T. H.; Shen, Z. Y., A new electric boundary condition of electric fracture mechanics and its applications, Eng. Fract. Mech., 47, 793-802 (1994)
[8] Hou, P. F.; Leung, A. Y.T., A spheroidal inclusion in an infinite magneto-electro-elastic material, Int. J. Eng. Sci., 42, 1255-1273 (2004)
[9] Li, R.; Kardomateas, G. A., The mode III interface crack in piezo-electro-magneto-elastic dissimilar bimaterials, J. Appl. Mech., 73, 220-227 (2006) · Zbl 1111.74509
[10] Li, X.-F., Dynamic analysis of a cracked magnetoelectroelastic medium under antiplane mechanical and inplane electric and magnetic impacts, Int. J. Solids Struct., 42, 3185-3205 (2005) · Zbl 1142.74014
[11] Li, X.-F.; Lee, K. Y., Three-dimensional electroelastic analysis of a piezoelectric material with a penny-shaped dielectric crack, J. Appl. Mech., 71, 866-878 (2004) · Zbl 1111.74513
[12] Li, X.-F.; Lee, K. Y., Crack growth in a piezoelectric material with a Griffith crack perpendicular to the poling axis, Philos. Mag., 84, 1789-1820 (2004)
[13] Li, X.-F.; Lee, K. Y., Effects of electric field on crack growth for a penny-shaped dielectric crack in a piezoelectric layer, J. Mech. Phys. Solids, 52, 2079-2100 (2004) · Zbl 1081.74544
[14] Liu, J.-X.; Liu, X.-L.; Zhao, Y.-B., Green’s functions for anisotropic magnetoelectro-elastic solids with an elliptical cavity or a crack, Int. J. Eng. Sci., 39, 1405-1418 (2001) · Zbl 1210.74073
[15] McMeeking, R. M., The energy release rate for a Griffith crack in a piezoelectric material, Eng. Fract. Mech., 71, 1149-1163 (2004)
[16] Niraula, O. P.; Wang, B. L., A magneto-electro-elastic material with a penny-shaped crack subjected to temperature loading, Acta Mech., 187, 151-168 (2006) · Zbl 1151.76586
[17] Park, S.; Sun, C. T., Fracture criterion for piezoelectric ceramics, J. Am. Ceram. Soc., 78, 1475-1480 (1995)
[18] Sih, G. C.; Jones, R.; Song, Z. F., Piezomagnetic and piezoelectric poling effects on mode I and II crack initiation behavior of magnetoelectroelastic materials, Theor. Appl. Fract. Mech., 40, 161-186 (2003)
[19] Soh, A. K.; Liu, J. X., Interfacial debonding of a circular inhomogeneity in piezoelectric-pizoemagnetic composites under anti-plane mechanical and inplane electromagnetic loading, Comp. Sci. Tech., 65, 1347-1353 (2005)
[20] Tian, W. Y.; Gabbert, U., Multiple crack interaction problem in magnetoelectroelastic solids, Eur. J. Mech. A/Solids, 23, 599-614 (2004) · Zbl 1062.74044
[21] Tian, W. Y.; Rajapakse, R. K.N. D., Fracture analysis of magnetoelectroelastic solids using path independent integrals, Int. J. Fract., 131, 311-335 (2005) · Zbl 1196.74217
[22] Tian, W. Y.; Rajapakse, R. K.N. D., Field intensity factors of a penny-shaped crack in a magnetoelectroelastic layer, J. Alloys Compounds, 449, 161-171 (2008)
[23] Wang, B.-L.; Mai, Y.-W., Fracture of piezoelectromagnetic materials, Mech. Res. Commun., 31, 65-73 (2004) · Zbl 1045.74586
[24] Wang, B.-L.; Mai, Y.-W., Closed form solution for an anti-plane interface crack between two dissimilar magnetoelectroelastic layer, J. Appl. Mech., 73, 281-290 (2006) · Zbl 1111.74685
[25] Wang, B.-L.; Mai, Y.-W., Applicability of the crack-face electromagnetic boundary conditions for fracture of magnetoelectroelastic materials, Int. J. Solids Struct., 44, 387-398 (2007) · Zbl 1178.74145
[26] Wang, H.; Singh, R. N., Crack propagation in piezoelectric ceramics: effects of applied electric fields, J. Appl. Phys., 81, 7471-7479 (1997)
[27] Wu, X. H.; Shen, Y.-P.; Wang, X., Stress concentration around a hyperboloidal notch under tension in a magnetoelectroelastic material, ZAMM, 84, 818-824 (2004) · Zbl 1061.74018
[28] Zhao, M. H.; Yang, F.; Liu, T., Analysis of a penny-shaped crack in a magneto-electro-elastic medium, Philos. Mag., 86, 4397-4416 (2006)
[29] Zhong, X.-C.; Li, X.-F., A finite length crack propagating along the interface of two dissimilar magnetoelectroelastic materials, Int. J. Eng. Sci., 44, 1394-1407 (2006)
[30] Zhong, X.-C.; Li, X.-F., Magnetoelectroelastic analysis for an opening crack in a piezoelectromagnetic solid, Eur. J. Mech. A/Solids, 26, 405-417 (2007) · Zbl 1150.74044
[31] Zhou, Z. G.; Wu, L. Z.; Wang, B., The dynamic behaviour of two collinear cracks in magneto-electro-elastic materials, Eur. J. Mech. A/Solids, 24, 253-262 (2005) · Zbl 1069.74047
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.