×

Maximal functions associated with flat plane curves with mitigating factors. (English) Zbl 1409.42016

Summary: We study the boundedness problem for maximal operators \({\mathbb {M}}^{\sigma }\) associated with flat plane curves with mitigating factors, defined by \[ {\mathbb {M}}^{\sigma }f(x) \, := \, \sup _{1 \leq t \leq 2} \left| \int _{0}^{1} f(x-t\Gamma (s)) \, \kappa (s)^{\sigma } \, \mathrm{d}s\right| , \] where \(\kappa (s)\) denotes the curvature of the curve \(\Gamma (s)=(s, g(s)+1)\), \(g(s) \in C^5[0,1]\) in \({\mathbb {R}}^2\). Let \(\triangle \) be the closed triangle with vertices \(P=(\frac{2}{5}, \frac{1}{5})\), \(Q=(\frac{1}{2}, \frac{1}{2})\), \(R=(0, 0)\). In this paper, we prove that for \( (\frac{1}{p}, \frac{1}{q}) \in \left( \Delta {\setminus } \{P, Q\} \right) \cap \{(\frac{1}{p}, \frac{1}{q}) :q > \max \{\sigma ^{-1},2\} \}\), there is a constant \(B\) such that \( \| {\mathbb {M}}^{\sigma }f\| _{L^q({\mathbb {R}}^2)} \leq \, B \, \| f\| _{L^p({\mathbb {R}}^2)}\).

MSC:

42B25 Maximal functions, Littlewood-Paley theory
42B15 Multipliers for harmonic analysis in several variables
46T30 Distributions and generalized functions on nonlinear spaces

References:

[1] Bak, J.G.: Averages over surfaces with infinitely flat points. J. Funct. Anal. 129, 455-470 (1995) · Zbl 0830.46019 · doi:10.1006/jfan.1995.1059
[2] Bourgain, J.: Averages in the plane over convex curves and maximal operators. J. Anal. Math. 47, 69-85 (1986) · Zbl 0626.42012 · doi:10.1007/BF02792533
[3] Bourgain, J.: Estimations de certaines fonctions maximales. C. R. Acad. Sci. Paris Ser. I Math. 301(10), 499-502 (1985)
[4] Duoandikoetxea, J.: Fourier Analysis. Graduate Studies in Mathematics, vol. 29. American Mathematical Society, New York (2001) · Zbl 0969.42001
[5] Ikromov, I.A., Kempe, M., Müller, D.: Estimates for maximal functions associated with hypersurfaces in \[{\mathbb{R}}^3\] R3 and related problems of harmonic analysis. Acta Math. 204(2), 151-271 (2010) · Zbl 1223.42011 · doi:10.1007/s11511-010-0047-6
[6] Iosevich, A.: Maximal operators associated to families of flat curves in the plane. Duke Math. J. 76(2), 633-644 (1994) · Zbl 0827.42010 · doi:10.1215/S0012-7094-94-07622-9
[7] Kolasa, L., Wolff, T.: on some variants of the kakeya problem. Pacific J. Math. 190(1), 111-154 (1999) · Zbl 1019.42013 · doi:10.2140/pjm.1999.190.111
[8] Lee, S.: Endpoint estimates for the circular maximal function. Proc. Am. Math. Soc. 131(5), 1433-1442 (2003) · Zbl 1042.42007 · doi:10.1090/S0002-9939-02-06781-3
[9] Marletta, G.: Maximal functions with mitigating factors in the plane. J. Lond. Math. Soc. (2) 59(2), 647-656 (1999) · Zbl 0947.42013 · doi:10.1112/S0024610798006590
[10] Mockenhaupt, G., Seeger, A., Sogge, C.D.: Wave front sets, local smoothing and Bourgain’s circular maximal theorem. Ann. Math. 136, 207-218 (1992) · Zbl 0759.42016 · doi:10.2307/2946549
[11] Mockenhaupt, G., Seeger, A., Sogge, C.D.: Local smoothing for Fourier integral operators and Carleson-Sölin estimates. J. Am. Math. Soc. 6, 65-130 (1993) · Zbl 0776.58037
[12] Schlag, W.: A generalization of Bourgain’s circular maximal theorem. J. Am. Math. Soc. 10, 103-122 (1997) · Zbl 0867.42010 · doi:10.1090/S0894-0347-97-00217-8
[13] Schlag, W., Sogge, C.D.: Local smoothing estimates related to the circular maximal theorem. Math. Res. Lett. 4, 1-15 (1997) · Zbl 0877.42006 · doi:10.4310/MRL.1997.v4.n1.a1
[14] Sogge, C.D.: Fourier Integrals in Classical Analysis, vol. 105. Cambridge Tracts In Mathematics, Cambridge (1993) · Zbl 0783.35001 · doi:10.1017/CBO9780511530029
[15] Stein, E.M.: Harmonic Analysis: Real Variable Methods, Orthogonality and Oscillatory Integrals. Princeton University Press, Princeton (1993) · Zbl 0821.42001
[16] Stein, E.M., Wainger, S.: Problem in harmonic analysis related to curvature. Bull. Am. Math. Soc. 84, 1239-1295 (1978) · Zbl 0393.42010 · doi:10.1090/S0002-9904-1978-14554-6
[17] Tao, T.: Endpoint bilinear restriction theorems for the cone and some sharp null from estimates. Math. Z. 238, 215-268 (2001) · Zbl 0992.42004 · doi:10.1007/s002090100251
[18] Tao, T., Vargas, A.: A bilinear approach to cone multipliers. II. Geom. Funct. Anal. 10, 216-258 (2000) · Zbl 0949.42013 · doi:10.1007/s000390050007
[19] Wolff, T.: A sharp cone restriction estimate. Ann. Math. 153, 661-698 (2001) · Zbl 1125.42302 · doi:10.2307/2661365
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.