×

Estimates for maximal functions associated with hypersurfaces in \(\mathbb R^3\) and related problems of harmonic analysis. (English) Zbl 1223.42011

From the authors’ abstract: We study the boundedness problem for maximal operators \(\mathcal{M}\) associated with averages along smooth hypersurfaces \(S\) of finite type in \(3\)-dimensional Euclidean space. For \(p>2\), we prove that if no affine tangent plane to \(S\) passes through the origin and \(S\) is analytic, then the associated maximal operator is bounded on \(L^p(\mathbb R^3)\) if and only if \(p>h(S)\), where \(h(S)\) denotes the so-called height of the surface \(S\) (defined in terms of certain Newton diagrams). For non-analytic \(S\), we obtain the same statement with the exception of the exponent \(p=h(S)\). Our notion of height \(h(S)\) is closely related to A. N. Varchenko’s notion of height \(h(\varphi)\) for functions \(\varphi\) such that \(S\) can be locally represented as the graph of \(\varphi\) after rotation of coordinates. Several consequences of this result are discussed. In particular, we verify a conjecture of E. M. Stein and its generalization by A. Iosevich and E. Sawyer on the connection between the decay rate of the Fourier transform of the surface measure on \(S\) and the \(L^p\)-boundedness of the associated maximal operator \({\mathcal M}\) to an integrability condition on \(S\) for the distance to tangential hyperplanes, in dimension \(3\). In particular, we also give essentially sharp uniform estimates for the Fourier transform of the surface measure on \(S\), thus extending a result by V. N. Karpushkin from the analytic to the smooth setting and implicitly verifying a conjecture by V. I. Arnold in our context. As an immediate application of this, we obtain an \(L^p(\mathbb R^3) - L^2(S)\) Fourier restriction theorem for \(S\).

MSC:

42B20 Singular and oscillatory integrals (Calderón-Zygmund, etc.)
42B25 Maximal functions, Littlewood-Paley theory
Full Text: DOI

References:

[1] Arkhipov, G. I., Karatsuba, A. A. & Chubarikov, V. N., Trigonometric integrals. Izv. Akad. Nauk SSSR Ser. Mat., 43 (1979), 971–1003, 1197 (Russian); English translation in Math. USSR–Izv., 15 (1980), 211–239.
[2] Arnold, V. I., Remarks on the method of stationary phase and on the Coxeter numbers. Uspekhi Mat. Nauk, 28 (1973), 17–44 (Russian); English translation in Russian Math. Surveys, 28 (1973), 19–48.
[3] Arnold, V. I., Guseĭn-Zade, S. M. & Varchenko, A. N., Singularities of Differentiable Maps. Vol. II. Monographs in Mathematics, 83. Birkhäuser, Boston, MA, 1988.
[4] Bourgain, J., Averages in the plane over convex curves and maximal operators. J. Anal. Math., 47 (1986), 69–85. · Zbl 0626.42012 · doi:10.1007/BF02792533
[5] Bruna, J., Nagel, A. & Wainger, S., Convex hypersurfaces and Fourier transforms. Ann. of Math., 127 (1988), 333–365. · Zbl 0666.42010 · doi:10.2307/2007057
[6] Carbery, A., Wainger, S. & Wright, J., Singular integrals and the Newton diagram. Collect. Math., Vol. Extra (2006), 171–194. · Zbl 1213.42024
[7] Chester, C., Friedman, B. & Ursell, F., An extension of the method of steepest descents. Proc. Cambridge Philos. Soc., 53 (1957), 599–611. · Zbl 0082.28601 · doi:10.1017/S0305004100032655
[8] Cowling, M. & Mauceri, G., Inequalities for some maximal functions. II. Trans. Amer. Math. Soc., 296 (1986), 341–365. · Zbl 0651.42007 · doi:10.1090/S0002-9947-1986-0837816-0
[9] – Oscillatory integrals and Fourier transforms of surface carried measures. Trans. Amer. Math. Soc., 304 (1987), 53–68. · Zbl 0647.42009 · doi:10.1090/S0002-9947-1987-0906805-0
[10] Domar, Y., On the Banach algebra A(G) for smooth sets {\(\Gamma\)} R n . Comment. Math. Helv., 52 (1977), 357–371. · Zbl 0356.43002 · doi:10.1007/BF02567374
[11] Duistermaat, J. J., Oscillatory integrals, Lagrange immersions and unfolding of singularities. Comm. Pure Appl. Math., 27 (1974), 207–281. · Zbl 0285.35010 · doi:10.1002/cpa.3160270205
[12] Greenblatt, M., Newton polygons and local integrability of negative powers of smooth functions in the plane. Trans. Amer. Math. Soc., 358 (2006), 657–670. · Zbl 1080.42011 · doi:10.1090/S0002-9947-05-03664-0
[13] – The asymptotic behavior of degenerate oscillatory integrals in two dimensions. J. Funct. Anal., 257 (2009), 1759–1798. · Zbl 1335.58019 · doi:10.1016/j.jfa.2009.06.015
[14] – Oscillatory integral decay, sublevel set growth, and the Newton polyhedron. Math. Ann., 346 (2010), 857–895. · Zbl 1192.14005 · doi:10.1007/s00208-009-0424-7
[15] – Resolution of singularities, asymptotic expansions of oscillatory integrals, and related phenomena. Preprint, 2007. arXiv:0709.2496v2 [math.CA].
[16] Greenleaf, A., Principal curvature and harmonic analysis. Indiana Univ. Math. J., 30 (1981), 519–537. · Zbl 0517.42029 · doi:10.1512/iumj.1981.30.30043
[17] Hörmander, L., The Analysis of Linear Partial Differential Operators. I. Grundlehren der Mathematischen Wissenschaften, 256. Springer, Berlin–Heidelberg, 1990.
[18] Ikromov, I. A., Kempe, M. & Müller, D., Damped oscillatory integrals and boundedness of maximal operators associated to mixed homogeneous hypersurfaces. Duke Math. J., 126 (2005), 471–490. · Zbl 1152.42304 · doi:10.1215/S0012-7094-04-12632-6
[19] Ikromov, I. A. & Müller, D., On adapted coordinate systems. To appear in Trans. Amer. Math. Soc. · Zbl 1222.35219
[20] – Uniform estimates for the Fourier transform of surface carried measures and a sharp L p -L 2 Fourier restriction theorem for hypersurfaces in \( {\mathbb{R}^3} \) . In preparation.
[21] Iosevich, A., Maximal operators associated to families of flat curves in the plane. Duke Math. J., 76 (1994), 633–644. · Zbl 0827.42010 · doi:10.1215/S0012-7094-94-07622-9
[22] Iosevich, A. & Sawyer, E., Oscillatory integrals and maximal averages over homogeneous surfaces. Duke Math. J., 82 (1996), 103–141. · Zbl 0898.42004 · doi:10.1215/S0012-7094-96-08205-8
[23] – Maximal averages over surfaces. Adv. Math., 132 (1997), 46–119. · Zbl 0921.42015 · doi:10.1006/aima.1997.1678
[24] Iosevich, A., Sawyer, E. & Seeger, A., On averaging operators associated with convex hypersurfaces of finite type. J. Anal. Math., 79 (1999), 159–187. · Zbl 0997.42009 · doi:10.1007/BF02788239
[25] Karpushkin, V. N., A theorem on uniform estimates for oscillatory integrals with a phase depending on two variables. Trudy Sem. Petrovsk., 10 (1984), 150–169, 238 (Russian); English translation in J. Soviet Math., 35 (1986), 2809–2826. · Zbl 0569.58033
[26] Levinson, N., Transformation of an analytic function of several variables to a canonical form. Duke Math. J., 28 (1961), 345–353. · Zbl 0100.29002 · doi:10.1215/S0012-7094-61-02831-9
[27] Magyar, Á, On Fourier restriction and the Newton polygon. Proc. Amer. Math. Soc., 137 (2009), 615–625. · Zbl 1159.42007 · doi:10.1090/S0002-9939-08-09510-5
[28] Mockenhaupt, G., Seeger, A. & Sogge, C. D., Wave front sets, local smoothing and Bourgain’s circular maximal theorem. Ann. of Math., 136 (1992), 207–218. · Zbl 0759.42016 · doi:10.2307/2946549
[29] – Local smoothing of Fourier integral operators and Carleson–Sjölin estimates. J. Amer. Math. Soc., 6 (1993), 65–130. · Zbl 0776.58037
[30] Nagel, A., Seeger, A. & Wainger, S., Averages over convex hypersurfaces. Amer. J. Math., 115 (1993), 903–927. · Zbl 0832.42010 · doi:10.2307/2375017
[31] Phong, D. H. & Stein, E. M., The Newton polyhedron and oscillatory integral operators. Acta Math., 179 (1997), 105–152. · Zbl 0896.35147 · doi:10.1007/BF02392721
[32] Phong, D. H., Stein, E. M. & Sturm, J. A., On the growth and stability of real-analytic functions. Amer. J. Math., 121 (1999), 519–554. · Zbl 1015.26031 · doi:10.1353/ajm.1999.0023
[33] Randol, B., On the asymptotic behavior of the Fourier transform of the indicator function of a convex set. Trans. Amer. Math. Soc., 139 (1969), 279–285. · Zbl 0183.26905 · doi:10.1090/S0002-9947-1969-0251450-5
[34] Schulz, H., Convex hypersurfaces of finite type and the asymptotics of their Fourier transforms. Indiana Univ. Math. J., 40 (1991), 1267–1275. · Zbl 0758.42007 · doi:10.1512/iumj.1991.40.40056
[35] Sogge, C. D., Fourier Integrals in Classical Analysis. Cambridge Tracts in Mathematics, 105. Cambridge University Press, Cambridge, 1993. · Zbl 0783.35001
[36] – Maximal operators associated to hypersurfaces with one nonvanishing principal curvature, in Fourier Analysis and Partial Differential Equations (Miraflores de la Sierra, 1992), Stud. Adv. Math., pp. 317–323. CRC, Boca Raton, FL, 1995.
[37] Sogge, C. D. & Stein, E. M., Averages of functions over hypersurfaces in R n . Invent. Math., 82 (1985), 543–556. · Zbl 0626.42009 · doi:10.1007/BF01388869
[38] Stein, E. M., Maximal functions. I. Spherical means. Proc. Nat. Acad. Sci. U.S.A., 73 (1976), 2174–2175. · Zbl 0332.42018 · doi:10.1073/pnas.73.7.2174
[39] – Harmonic Analysis: Real-Variable Methods, Orthogonality, and Oscillatory Integrals. Princeton Mathematical Series, 43. Princeton University Press, Princeton, NJ, 1993. · Zbl 0821.42001
[40] Svensson, I., Estimates for the Fourier transform of the characteristic function of a convex set. Ark. Mat., 9 (1971), 11–22. · Zbl 0221.52001 · doi:10.1007/BF02383634
[41] Varchenko, A. N., Newton polyhedra and estimates of oscillatory integrals. Funktsional. Anal. i Prilozhen., 10 (1976), 13–38 (Russian); English translation in Functional Anal. Appl., 18 (1976), 175–196.
[42] Vasil’ev, B. A., The asymptotic behavior of exponential integrals, the Newton diagram and the classification of minima. Funktsional. Anal. i Prilozhen., 11 (1977), 1–11, 96 (Russian); English translation in Functional Anal. Appl., 11 (1977), 163–172. · Zbl 0368.34015 · doi:10.1007/BF01135526
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.