×

Fourier transform of surface-carried measures of two-dimensional generic surfaces and applications. (English) Zbl 1500.42002

Summary: We give a simple proof of the sharp decay of the Fourier-transform of surface-carried measures of two-dimensional generic surfaces. The estimates are applied to prove Strichartz and resolvent estimates for elliptic operators whose characteristic surfaces satisfy the generic assumptions. We also obtain new results on the spectral and scattering theory of discrete Schrödinger operators on the cubic lattice.

MSC:

42A38 Fourier and Fourier-Stieltjes transforms and other transforms of Fourier type
42B20 Singular and oscillatory integrals (Calderón-Zygmund, etc.)
35R02 PDEs on graphs and networks (ramified or polygonal spaces)
81Q05 Closed and approximate solutions to the Schrödinger, Dirac, Klein-Gordon and other equations of quantum mechanics
39A12 Discrete version of topics in analysis
35L05 Wave equation

References:

[1] T. Alazard; N. Burq; C. Zuily, A stationary phase type estimate, Proc. Amer. Math. Soc., 145, 2871-2880 (2017) · Zbl 1364.35012 · doi:10.1090/proc/13199
[2] V. I. Arnold, S. M. Gusein-Zade and A. N. Varchenko, Singularities of Differentiable Maps, Modern Birkhäuser Classics, Birkhäuser/Springer, New York, 2012.
[3] M. Ben-Artzi; H. Koch; J.-C. Saut, Dispersion estimates for third order equations in two dimensions, Commun. Partial Differ. Equ., 28, 1943-1974 (2003) · Zbl 1060.35122 · doi:10.1081/PDE-120025491
[4] J. Bourgain, Random lattice Schrödinger operators with decaying potential: some higher dimensional phenomena, in Geometric aspects of functional analysis, pages 70-98. Springer, Berlin, 2003. · Zbl 1071.47042
[5] J. Bourgain, On random Schrödinger operators on \(\Bbb Z^2\), Discrete Contin. Dyn. Syst., 8, 1-15 (2002) · Zbl 1006.47034 · doi:10.3934/dcds.2002.8.1
[6] J.-C. Cuenin, From spectral cluster to uniform resolvent estimates on compact manifolds, arXiv: 2011.07254.
[7] J. J. Duistermaat, Oscillatory integrals, Lagrange immersions and unfolding of singularities, Commun. Pure Appl. Math., 27, 207-281 (1974) · Zbl 0285.35010 · doi:10.1002/cpa.3160270205
[8] L. Erdős; M. Salmhofer; H. T. Yau, Quantum diffusion for the Anderson model in the scaling limit, Ann. Henri Poincaré, 8, 621-685 (2007) · Zbl 1208.82026 · doi:10.1007/s00023-006-0318-0
[9] L. Erdos; M. Salmhofer, Decay of the Fourier transform of surfaces with vanishing curvature, Math. Z., 257, 261-294 (2007) · Zbl 1122.42003 · doi:10.1007/s00209-007-0125-4
[10] M. Golubitsky and V. Guillemin, Stable mappings and their singularities, Springer-Verlag, New York-Heidelberg, 1973. · Zbl 0294.58004
[11] A. Greenleaf, Principal curvature and harmonic analysis, Indiana Univ. Math. J., 30, 519-537 (1981) · Zbl 0517.42029 · doi:10.1512/iumj.1981.30.30043
[12] I. A. Ikromov; M. Kempe; D. Müller, Estimates for maximal functions associated with hypersurfaces in \(\Bbb R^3\) and related problems of harmonic analysis, Acta Math., 204, 151-271 (2010) · Zbl 1223.42011 · doi:10.1007/s11511-010-0047-6
[13] I. A. Ikromov; D. Müller, On adapted coordinate systems, Trans. Amer. Math. Soc., 363, 2821-2848 (2011) · Zbl 1222.35219 · doi:10.1090/S0002-9947-2011-04951-2
[14] I A. Ikromov; D. Müller, Uniform estimates for the Fourier transform of surface carried measures in \(\Bbb R^3\) and an application to Fourier restriction, J. Fourier Anal. Appl., 17, 1292-1332 (2011) · Zbl 1241.42009 · doi:10.1007/s00041-011-9191-4
[15] I A. Ikromov and D. Müller, Fourier restriction for hypersurfaces in three dimensions and Newton polyhedra, in Annals of Mathematics Studies, Princeton University Press, Princeton, NJ, 2016. · Zbl 1352.42001
[16] V. N. Karpushkin, A theorem on uniform estimates for oscillatory integrals with a phase depending on two variables, Trudy Sem. Petrovsk., 238, 150-169 (1984) · Zbl 0569.58033
[17] M. Keel; T. Tao, Endpoint Strichartz estimates, Amer. J. Math., 120, 955-980 (1998) · Zbl 0922.35028
[18] Evgeny L. Korotyaev; Jacob Schach Møller, Weighted estimates for the Laplacian on the cubic lattice, Ark. Mat., 57, 397-428 (2019) · Zbl 1427.47014 · doi:10.4310/ARKIV.2019.v57.n2.a8
[19] Y. Kwon; S. Lee, Sharp resolvent estimates outside of the uniform boundedness range, Commun. Math. Phys., 374, 1417-1467 (2020) · Zbl 1444.35032 · doi:10.1007/s00220-019-03536-y
[20] W. Littman, Fourier transforms of surface-carried measures and differentiability of surface averages, Bull. Amer. Math. Soc., 69, 766-770 (1963) · Zbl 0143.34701 · doi:10.1090/S0002-9904-1963-11025-3
[21] R. Mandel and R. Schippa, Time-harmonic solutions for Maxwell’s equations in anisotropic media and Bochner-Riesz estimates with negative index for non-elliptic surfaces, Ann. Henri Poincaré, 415-445, 2021.
[22] S. Oh and S. Lee, Uniform stationary phase estimate with limited smoothness, arXiv: 2012.12572.
[23] L. Palle, Mixed norm Strichartz-type estimates for hypersurfaces in three dimensions, Math. Z., 297, 1529-1599 (2021) · Zbl 1461.42006 · doi:10.1007/s00209-020-02568-8
[24] M. Reed and B. Simon, Methods of Modern Mathematical Physics. IV. Analysis of Operators, Academic Press, Harcourt Brace Jovanovich Publishers, New York, London, 1978. · Zbl 0401.47001
[25] W. Schlag; C. Shubin; T. Wolff, Frequency concentration and location lengths for the Anderson model at small disorders, J. Anal. Math., 88, 173-220 (2002) · Zbl 1032.60060 · doi:10.1007/BF02786577
[26] C. D. Sogge, Fourier integrals in classical analysis, in Cambridge Tracts in Mathematics, Cambridge University Press, Cambridge, 2017. · Zbl 1361.35005
[27] E. M. Stein, Harmonic analysis: real-variable methods, orthogonality, and oscillatory integrals, in Princeton Mathematical Series, Princeton University Press, Princeton, NJ, 1993. · Zbl 0821.42001
[28] K. Taira, Limiting absorption principle on \(L^p\)-spaces and scattering theory, J. Math. Phys., 61 (2020), 092106, 28 pp. · Zbl 1454.81087
[29] K. Taira, Uniform resolvent estimates for the discrete Schrödinger operator in dimension three, J. Spectr. Theory, 11, 1831-1855 (2021) · Zbl 1518.35267 · doi:10.4171/jst/387
[30] A. N. Varchenko, Newton polyhedra and estimation of oscillating integrals, Funct. Anal. Appl., 10, 175-196 (1976) · Zbl 0351.32011
[31] R. Vershynin, High-dimensional probability, in Cambridge Series in Statistical and Probabilistic Mathematics, Cambridge University Press, Cambridge, 2018. · Zbl 1430.60005
[32] H. Whitney, On singularities of mappings of euclidean spaces. I. Mappings of the plane into the plane, Ann. Math., 62, 374-410 (1955) · Zbl 0068.37101 · doi:10.2307/1970070
[33] D. R. Yafaev, Mathematical scattering theory, in Translations of Mathematical Monographs, American Mathematical Society, Providence, RI, 1992. · Zbl 0761.47001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.