×

Homological mirror symmetry for Milnor fibers via moduli of \(A_\infty\)-structures. (English) Zbl 1539.14079

The authors of the paper under review relate the base spaces of the semiuniversal unfoldings of certain weighted homogeneous singularities to the moduli space of \(A_{\infty}\)-structures on the trivial extension algebras of the endomorphism algebras of the tilting objects. Using these relations, they prove homological mirror symmetry for an \(n\)-dimensional affine hypersurface of degree \(n+2\) and the double cover of the \(n\)-dimensional affine space branched along a degree \(2n+2\) hypersurface. These homological mirror symmetry results answer for Seidel’s conjecture that homological mirror symmetry could be obtained as deformations of homological mirror symmetry at the large volume limit. As a byproduct, they compute symplectic cohomology of certain Milnor fibers of isolated hypersurface singularities via taking Hochschild cohomology of the corresponding category under the homological mirror symmetry.
Let us review the main theorems after explaining the geometric settings as follows. Take a sequence \((d_{1},\cdots , d_{n};h)\) of positive integers satisfying \(h>max\{d_{1},\cdots, d_{n}\}\) and \(gcd(d_{1},\cdots,d_{n},h)=1\). Consider a weighted homogeneous polynomial \(w(x_{1},\cdots, x_{n})\in k[x_{1},\cdots, x_{n}]\) in \(n\) variables of weight \((d_{1},\cdots, d_{n};h)\); \[ w(t^{d_{1}}x_{1},\cdots, t^{d_{n}}x_{n})=t^{h}w(x_{1},\cdots, x_{n}), t\in \mathbb{G}_{m}. \] Consider a set \(I_{w}:=\{\mathbf{i}=(i_{1},\cdots, i_{n})\in \mathbb{Z}_{\geq 0}^{\oplus n}: d_{1}i_{1}+\cdots+d_{n}i_{n}=h\}\). Then the weighted homogenous polynomial can be written as the sum of monomials with index set \(I_{w}\); \(w(x_{1},\cdots, x_{n})=\sum_{I_{w}}c_{\mathbf{i}}x_{1}^{i_{1}}\cdots x_{n}^{i_{n}}, c_{\mathbf{i}}\in \mathbb{G}_{m}\).
Consider a commutative algebraic subgroup \(\Gamma_{w}\) of \(\mathbb{G}_{m}^{n+1}\) defined by \(\{(t_{1},\cdots, t_{n+1})\in \mathbb{G}_{m}^{n+1}|t_{1}^{i_{1}}\cdots t_{n}^{i_{n}}=t_{n+1} \text{ for all } (i_{1},\cdots, i_{n})\in I_{w}\}\). The group \(\widehat{\Gamma}_{w}:=\mathrm{Hom}(\Gamma_{w},\mathbb{G}_{m})\) of characters of \(\Gamma_{w}\) is generated by \(\chi_{i}:\Gamma_{w}\to \mathbb{G}_{m}\), by \(\xi(t_{1},\cdots, t_{n+1})=t_{i}\) for \(1\leq i\leq n+1\), with the relations generated by \(i_{1}\chi_{1}+\cdots+i_{n}\chi_{n}-\chi_{n+1}=0, \mathbf{i}\in I_{w}\). Since the last coordinate of the elements of \(\Gamma_{w}\) is determined by the relations, we can consider \(\Gamma_{w}\) as a subgroup of \(\mathbb{G}_{m}^{n}\) by taking first \(n\) coordinates and denote \(\chi_{w}:=\chi_{n+1}, \chi_{w}(t_{1},\cdots,t_{n}):=t_{1}^{i_{1}}\cdots t_{n}^{i_{n}}\), the last coordinate separately. Then the group \(\Gamma_{w}\subset \mathbb{G}_{m}^{n}\) coinsides with the group of diagonal transformations of \(\mathbb{A}^{n}\) which keep \(w\) semi-invariant as follows; \(w(t\cdot (x_{1},\cdots,x_{n}))=\chi_{w}(t)w(x_{1},\cdots,x_{n})\), for \(t\in \Gamma_{w}, \mathbf{x}\in \mathbb{A}^{n}\). Then the injective homomorphism \(\phi:\mathbb{G}_{m}\to \Gamma_{w}, \phi(t):=(t^{d_{1}}\cdots, t^{d_{n}})\) has the cokernel \(\{(t_{1},\cdots,t_{n})\in\mathbb{G}_{m}^{n}|t_{1}^{i_{1}}\cdots t_{n}^{i_{n}}=1\}/<j_{w}:=(e^{2\pi\sqrt{-1}d_{1}/h},\cdots, e^{2\pi\sqrt{-1}d_{n}/h})>\). Here, \(<j_{w}>\) is the cyclic group \(\ker \chi_{w}\cap \phi(\mathbb{G}_{m})\) of order \(h\). Define a new group \(\Gamma\) which is a subgroup of \(\Gamma_{w}\) containing \(\phi(\mathbb{G}_{m})\) as a subgroup of finite index. Consider the restricted map \(\chi:=\chi_{w}|_{\Gamma}:\Gamma\subset \Gamma_{w}\to\mathbb{G}_{m}\), then the kernel of \(\chi\) is a finite group. The set of such subgroup \(\Gamma\) with \(\phi(\mathbb{G}_{m})\subset \Gamma \subset \Gamma_{w}\) with \([\Gamma:\phi(\mathbb{G}_{m})]<\infty\) is in bijection with the set of finite subgroups of \(ker\chi_{w}\) containing \(j_{w}\). Consider a ring \(\overline{R}:=k[x_{1},\cdots,x_{n}]/(w)\) and the group \(\Gamma\) acts on \(\mathrm{Spec}(\overline{R})\). Define a stack \(\mathcal{X}:=[(\mathrm{Spec}\overline{R} \setminus 0)/\Gamma]\). Consider \(R:=k[x_{0},x_{1},\cdots,x_{n}]/(w)\). Define \(\chi_{0}:=\chi-\chi_{1}-\cdots-\chi_{n}\) and extend the diagonal action \(\Gamma\) on \(\mathrm{Spec}(k[x_{1},\cdots,x_{n}])\) to \(\mathrm{Spec}(k[x_{0},x_{1},\cdots,x_{n}])\) via \(\chi_{0}\oplus \chi_{1}\oplus \cdots\oplus \chi_{n}\). Assume \(d_{0}:=h-d_{1}-\cdots-d_{n}>0\). The stack \(\mathcal{Y}_{0}:=[(\mathrm{Spec}\,R \setminus0)/\Gamma]\) is a projective cone over \(\mathcal{X}\) obtained from \([\mathrm{Spec}\, \overline{R}/\ker\chi_{0}]\) by adding \(\mathcal{X}\).
Assume that \(w:\mathbb{A}^{n}\to \mathbb{A}\) has an isolated singularity at the origin. Consider the Jacobi algebra \(\mathrm{Jac}_{w}:=k[x_{1},\cdots,x_{n}]/(\partial_{1}w,\cdots,\partial_{n}w)\) and the Milnor number \(\mu:=\dim_{k}\mathrm{Jac}_{w}\). Define the set \(J_{w}\) of exponents of monomials representing a basis of \(\mathrm{Jac}_{w}\). Consider a seminuniversal unfolding \(\widetilde{w}:\mathbb{A}^{n}\times \mathrm{Spec}(k[u_{1},\cdots,u_{\mu}])\to \mathbb{A}^{1}\) by \(\widetilde{w}(x_{1},\cdots,x_{n},u_{j})=w(x_{1},\cdots,x_{n})+\sum_{(j_{1},\cdots,j_{n})\in J_{w}}u_{j}x_{1}^{j_{1}}\cdots x_{n}^{j_{n}}\). Denote the base by \(\widetilde{U}:=\mathrm{Spec}(k[u_{1},\cdots,u_{\mu}])\). Define \[ U:=\{u_{j}\in \widetilde{U}|u_{j}\neq0 \implies [\exists w_{j} \text{ such that }\chi=w_{j}\chi_{0}+j_{1}\chi_{1}+\cdots +j_{n}\chi_{n}]\}. \] Consider the restricted function \(W:=\widetilde{w}:\mathbb{A}^{n+1}\times U\to \mathbb{A}^{1}\). Then there is a family \(\pi_{\mathcal{Y}}:\mathcal{Y}:=[(W^{-1}(0)\setminus (0\times U))/\Gamma]\to U\) of stacks over \(U\), whose fiber over \(u\in U\) is denoted by \(\mathcal{Y}_{u}\). The \(\mathbb{G}_{m}\)-action on \(\mathbb{A}^{n+1}\times U\) given by \(t\cdot(x_{0},x_{1},\cdots,x_{n},u_{j})=(t^{-1}x_{0},x_{1},\cdots,x_{n},t^{w_{j}}u_{j})\), which induces the actions on both \(\mathcal{Y}\) and \(U\) which makes the map \(\pi_{\mathcal{Y}}\) equivariant.
The following quasi-equivalence of two dg categories has been known since Orlov proved in [Y. Lekili and T. Perutz, “Arithmetic mirror symmetry for the 2-torus”, Preprint, arXiv:1211.4632]; \(\mathrm{Coh}([(\text{Spec}R\setminus 0)/\Gamma])\cong mf([\mathbb{A}^{n+1}/\Gamma],W),\) where \(\mathrm{Coh}(\cdot)\) means the bounded derived category of cohorent sheaves on the stack and \(mf([\mathbb{A}^{n+1}/\Gamma],W)\) means the idempotent-complete dg category of \(\Gamma\)-equivariant matrix factorizations. Taking Hochschild cohomology on both sides, \(HH^{*}([(\text{Spec}R\setminus 0)/\Gamma])\cong HH^{*}(\mathbb{A}^{n+1},\Gamma,W)\) and the right-hand side \(HH^{*}(\mathbb{A}^{n+1},\Gamma,W)\) can be computed as explained in the section 3.
Assume that the category \(mf([\mathbb{A}^{n}/\Gamma,w])\) has a tilting object \(E\), which means that the cohomologies of the endomorphism dg algebra \(\mathrm{End}(E)\) is concentrated in degree \(0\) and \(mf([\mathbb{A}^{n}/\Gamma], w)=<E>\), by shifts, cones and direct summands. Let \(\mathcal{E}\) be the pullback of \(E\) to \(mf([\mathbb{A}_{U}^{n}/\Gamma],w)\), then \(\mathrm{End}(\mathcal{E})\cong\mathrm{End}(E)\otimes k[U]\). Let \(\mathcal{S}\) be the pushforward of \(\mathcal{E}\) further to \(mf([\mathbb{A}_{U}^{n+1}/\Gamma],w)\). Then \(mf([\mathbb{A}_{U}^{n+1}/\Gamma],W)\cong coh\mathcal{Y}\) and \(\mathcal{S}\) split-generates \(\mathrm{perf} \mathcal{Y}\), where \(\mathcal{Y}:=[(W^{-1}(0)\setminus(0\times U))/\Gamma]\) was defined above, [D. Orlov, Prog. Math. 270, 503–531 (2009; Zbl 1200.18007), Theorem 16] and [Theorem 4.1 of the paper under review]. By taking a section of \(\omega_{\mathbb{A}_{U}^{n+1}/U}(\chi)\), we get an isomorphism \(\mathrm{End}(\mathcal{S})\cong A\otimes \mathcal{O}_{U}\),where the algebra \(A:=A^{0}\oplus \mathrm{Hom}_{k}(A^{0},k)[-(n-1)]\), by the degree \(n-1\) trivial extension algebra of \(A^{0}\) with the multiplication is defined by \((a,f)\cdot (b,g):=(ab,ag+fb)\).
Let \(A\) be a graded associative \(k\)-algebra. A minimal \(A_{\infty}\)-structure on \(A\) is an \(A_{\infty}\)-structure \((\mu^{k})_{k=1}^{\infty}\) on the graded vector space underlying the algebra \(A\) satisfying that \(\mu^{1}=0\) and \(\mu^{2}=\bullet_{A}\), the product structrue on the algebra \(A\). A minimal \(A_{\infty}\)-structure is called to be formal if the higher strcutures are vanishing, i.e., \(\mu^{k}=0, \text{ for } k>2\). If \(HH^{1}(A)_{<0}=0\), the functor sending a \(k\)-algebra \(R\) to the set of gauge equivalence classes of minimal \(A_{\infty}\)-structures on \(A\otimes R\) is represented by the affine affine scheme, \(\mathcal{U}_{\infty}(A)\), [A. Polishchuk, Duke Math. J. 166, No. 15, 2871–2924 (2017; Zbl 1401.14099), Corollary 3.2.5]. Then there is a natural \(\mathbb{G}_{m}\)-action on \(\mathcal{U}_{\infty}(A)\) given by \(t\cdot (\mu^{d})_{d=2}^{\infty}=(t^{d-2}\mu^{d})_{d=2}^{\infty}\) and the fixed points of this \(\mathbb{G}_{m}\)-action are the formal \(A_{\infty}\)-structures.
Let \(\mathcal{A}\) be the minimal model of the Yoneda dg algebra \(\mathrm{End}(\mathcal{S})\). Then \(Q\mathrm{Coh}(\mathcal{Y})\cong\mathrm{Mod}(\mathcal{A})\). Let \(\mathcal{A}_{0}:=\mathcal{A}\otimes_{k} k\) be the \(A_{\infty}\)-algebra over \(k\) obtained by restricting \(\mathcal{A}\) to the origin \(0\in U\). Considering \(\mathbb{G}_{m}\)-action, \(\mathcal{A}_{0}\) is a formal \(A_{\infty}\)-algebra. By [Y. Lekili and T. Perutz, “Arithmetic mirror symmetry for the 2-torus”, Preprint, arXiv:1211.4632], the natural dg enhancement of \(\mathrm{End}(S)\) gives a family of minimal \(A_{\infty}\)-algebra structures on \(A\) over \(U\). Therefore, we get a morphism \(U\to \mathcal{U}_{\infty}(A)\). The statement of Theorem 1.6 of the paper under review is that for a weighted homogeneous polynomial with the properties we explaned above, the morphism \(U\to \mathcal{U}_{\infty}(A)\) is \(\mathbb{G}_{m}\)-equivariant isomorphism sending the origin \(0\in U\) to the formal \(A_{\infty}\)-structure on \(A\). One of ideas of the proof is to reconstruct the \(\mathbb{Z}\)-algebra \((\mathrm{Hom}^{0}(\mathcal{O}_{\mathcal{Y}}(i),\mathcal{O}_{\mathcal{Y}}(i)))_{i,j\in\mathbb{Z}}\) up to isomorphism from the family of \(A_{\infty}\)-algebras using the Theorem 4.1, which says that \(\mathcal{S}\) split-generates perf \(\mathcal{Y}\). Moreover, by proposition A. 6 of [E. Looijenga, Math. Ann. 269, 357–387 (1984; Zbl 0568.14003)], \(U\) is the fine moduli space of \((\oplus_{i=0}^{\infty}H^{0}(\mathcal{O}(iX))/t\cdot \oplus_{i=0}^{\infty}H^{0}(\mathcal{O}(iX)))\)-polarized schemes and the universal family if given by the coarse moduli scheme of \(\mathcal{Y}\).
Reviewer: Dahye Cho (Seoul)

MSC:

14J33 Mirror symmetry (algebro-geometric aspects)
53D37 Symplectic aspects of mirror symmetry, homological mirror symmetry, and Fukaya category
14B05 Singularities in algebraic geometry
18G70 \(A_{\infty}\)-categories, relations with homological mirror symmetry

References:

[1] T.Abdelgadir, S.Okawa, and K.Ueda, Compact moduli of noncommutative projective planes, arXiv:1411.7770.
[2] M.Abouzaid, A geometric criterion for generating the Fukaya category, Publ. Math. Inst. Hautes Études Sci.112 (2010), 191-240. · Zbl 1215.53078
[3] B.Antieau and G.Vezzosi, A remark on the Hochschild-Kostant-Rosenberg theorem in characteristic \(p\), Ann. Sc. Norm. Super. Pisa Cl. Sci. (5)20 (2020), no. 3, 1135-1145. · Zbl 1476.14046
[4] V. I.Arnol’d, Local normal forms of functions, Invent. Math.35 (1976), 87-109. · Zbl 0336.57022
[5] D.Auroux, Speculations on homological mirror symmetry for hypersurfaces in \((\mathbb{C}^\ast )^n\), Surveys in differential geometry, vol. 22, International Press, Somerville, MA, 2018, pp. 1-47. · Zbl 1406.53086
[6] M.Ballard, D.Favero, and L.Katzarkov, A category of kernels for equivariant factorizations and its implications for Hodge theory, Publ. Math. Inst. Hautes Études Sci.120 (2014), 1-111. · Zbl 1401.14086
[7] A. A.Beilinson, Coherent sheaves on \(\mathbb{P}^n\) and problems in linear algebra, Funktsional. Anal. i Prilozhen.12 (1978), no. 3, 68-69. · Zbl 0402.14006
[8] D.Ben‐Zvi, J.Francis, and D.Nadler, Integral transforms and Drinfeld centers in derived algebraic geometry, J. Amer. Math. Soc.23 (2010), no. 4, 909-966. · Zbl 1202.14015
[9] D.Ben‐Zvi, D.Nadler, and A.Preygel, Integral transforms for coherent sheaves, J. Eur. Math. Soc.19 (2017), no. 12, 3763-3812. · Zbl 1402.14020
[10] P.Berglund and T.Hübsch, A generalized construction of mirror manifolds, Nuclear Phys. B393 (1993), no. 1-2, 377-391. · Zbl 1245.14039
[11] A. I.Bondal and A. E.Polishchuk, Homological properties of associative algebras: the method of helices, Izv. Ross. Akad. Nauk Ser. Mat.57 (1993), no. 2, 3-50; translation in Russian Acad. Sci. Izv. Math. 42 (1994), no. 2, 219-260. · Zbl 0847.16010
[12] L.Borisov and Z.Hua, On the conjecture of King for smooth toric Deligne‐Mumford stacks, Adv. Math.221 (2009), no. 1, 277-301. · Zbl 1210.14006
[13] E.Brieskorn, The unfolding of exceptional singularities, Nova Acta Leopoldina Nr.240 (1981), 65-93. · Zbl 0479.14005
[14] R. O.Buchweitz and H.Flenner, The global decomposition theorem for Hochschild (co‐)homology of singular spaces via the Atiyah‐Chern character, Adv. Math.217 (2008), 243-281. · Zbl 1144.14015
[15] B.Chantraine, G.Dimitroglou Rizell, P.Ghiggini, R.Golovko, Geometric generation of the wrapped Fukaya category of Weinstein manifolds and sectors, arXiv:1712.09126.
[16] A.Căldăraru and J.Tu, Curved \(A_\infty\) algebras and Landau‐Ginzburg models, New York J. Math.19 (2013), 305-342. · Zbl 1278.18022
[17] L.Diogo and S.Lisi, Symplectic homology of complements of smooth divisors, J. Topol.12 (2019), no. 3, 967-1030. · Zbl 1475.53097
[18] I. V.Dolgachev, Weighted projective varieties, Group actions and vector fields, Vancouver, BC, 1981, pp. 34-71, Lecture Notes in Mathematics, vol. 956, Springer, Berlin, 1982. · Zbl 0516.14014
[19] I. V.Dolgachev, Mirror symmetry for lattice polarized K3 surfaces, J. Math. Sci.81 (1996), no. 3, 2599-2630. · Zbl 0890.14024
[20] T.Dyckerhoff, Compact generators in categories of matrix factorizations, Duke Math. J.159 (2011), no. 2, 223-274. · Zbl 1252.18026
[21] W.Ebeling and A.Takahashi, Strange duality of weighted homogeneous polynomials, Compos. Math.147 (2011), no. 5, 1413-1433. · Zbl 1238.14029
[22] T.Ekholm and Y.Lekili, Duality between Lagrangian and Legendrian invariants, To appear in Geom. Topol. · Zbl 1536.53166
[23] T.Etgü and Y.Lekili, Koszul duality patterns in Floer theory, Geom. Topol.21 (2017), no. 6, 3313-3389. · Zbl 1378.57041
[24] T.Etgü and Y.Lekili, Fukaya categories of plumbings and multiplicative preprojective algebras, Quantum Topol., arXiv:1703.04515. · Zbl 1442.57013
[25] D.Favero, D.Kaplan, and T.Kelly, Exceptional collections for mirrors of invertible polynomials, arXiv:2001.06500. · Zbl 1524.14039
[26] D.Favero, D.Kaplan, and T.Kelly, A maximally‐graded invertible cubic threefold that does not admit a full exceptional collection of line bundles, arXiv:2004.04982. · Zbl 1460.14044
[27] M.Futaki and K.Ueda, Homological mirror symmetry for Brieskorn‐Pham singularities, Selecta Math. (N.S.)17 (2011), no. 2, 435-452. · Zbl 1250.53076
[28] M.Futaki and K.Ueda, Homological mirror symmetry for singularities of type D, Math. Z.273 (2013), no. 3-4, 633-652. · Zbl 1268.53094
[29] D.Gaitsgory and N.Rozenblyum, A study in derived algebraic geometry, vol. II: Deformations, Lie theory and formal geometry. Mathematical Surveys and Monographs, vol. 221, Amer. Math. Soc, Providence, RI, 2017, xxxv+436 pp. · Zbl 1409.14003
[30] B.Gammage and V.Shende, Mirror symmetry for very affine hypersurfaces, arXiv:1707.02959. · Zbl 1536.14030
[31] S.Ganatra, Symplectic cohomology and duality for the wrapped Fukaya category, Ph.D. thesis, Massachusetts Institute of Technology, 2012.
[32] S.Ganatra, J.Pardon, and V.Shende, Covariantly functorial wrapped Floer theory on Liouville sectors, Publ. Math. Inst. Hautes Études Sci.131 (2020), 73-200. · Zbl 1508.53091
[33] S.Ganatra, J.Pardon, and V.Shende, Sectorial descent for wrapped Fukaya categories, arXiv:1809.03427.
[34] S.Ganatra and D.Pomerleano, A Log PSS morphism with applications to Lagrangian embeddings, J. Topol.14 (2021), no. 1, 291-368. · Zbl 1469.53126
[35] S.Ganatra and D.Pomerleano, Symplectic cohomology rings of affine varieties in the topological limit, Geom. Funct. Anal.30 (2020), no. 2, 334-456. · Zbl 1451.53118
[36] M.Habermann, Homological Mirror Symmetry for invertible polynomials in two variables, Quantum Topol.13 (2022), no. 2, 207-253 · Zbl 1535.53083
[37] M.Habermann and J.Smith, Homological Berglund‐Hübsch mirror symmetry for curve singularities, J. Symplectic Geom.18 (2020), no. 6, 1515-1574. · Zbl 1470.53070
[38] Y.Hirano and G.Ouchi, Derived factorization categories of non‐Thom-Sebastiani‐type sum of potentials, arXiv:1809.09940.
[39] A.Ishii and K.Ueda, A note on derived categories of Fermat varieties. Derived categories in algebraic geometry, 103-110, EMS Ser. Congr. Rep., Eur. Math. Soc., Zürich, 2012. · Zbl 1314.14034
[40] M. U.Isik, Equivalence of the derived category of a variety with a singularity category, Int. Math. Res. Not.12 (2013), 2787-2808. · Zbl 1312.14052
[41] A.Keating, Lagrangian tori in four‐dimensional Milnor fibres, Geom. Funct. Anal.25 (2015), no. 6, 1822-1901. · Zbl 1338.32025
[42] A.Keating, Homological mirror symmetry for hypersurface cusp singularities, Sel. Math. New Ser.24 (2018), 1411-1452. · Zbl 1393.53086
[43] B.Keller, Cluster algebras, quiver representations and triangulated categories, London Math. Soc. Lecture Note Ser.375 (2010), 76-160. · Zbl 1215.16012
[44] B.Keller, Derived invariance of higher structures on the Hochschild complex (2018). https://webusers.imj‐prg.fr/ bernhard.keller/publ/dih.pdf.
[45] M.Kobayashi, M.Mase, and K.Ueda, A note on exceptional unimodal singularities and K3 surfaces, Int. Math. Res. Not.2013, no. 7, 1665-1690. · Zbl 1314.14066
[46] O.Kravets, Categories of singularities of invertible polynomial, arXiv:1911.09859. · Zbl 1375.13020
[47] Y.Lekili and T.Perutz, Fukaya categories of the torus and Dehn surgery, Proc. Natl. Acad. Sci. USA108 (2011), no. 20, 8106-8113. · Zbl 1256.53055
[48] Y.Lekili and T.Perutz, Arithmetic mirror symmetry for the 2‐torus, arXiv:1211.4632.
[49] Y.Lekili and A.Polishchuk, A modular compactification of \(\mathcal{M}_{1,n}\) from \(A_\infty \)‐structures. Journal für die reine und angewandte Mathematik (Crelles Journal), ISSN (Online) 1435-5345, ISSN (Print) 0075‐4102.
[50] Y.Lekili and A.Polishchuk, Arithmetic mirror symmetry for genus 1 curves with n marked points, Selecta Math. (N.S.)23 (2017), no. 3, 1851-1907. · Zbl 1373.53119
[51] Y.Lekili and A.Polishchuk, Homological mirror symmetry for higher dimensional pair of pants, Compos. Math.156 (2020), no. 7, 1310-1347. · Zbl 1467.14099
[52] Y.Lekili and K.Ueda, Homological mirror symmetry for Milnor fibers of simple singularities, Algebr. Geom.8 (2021), no. 5, 562-586. · Zbl 1476.53104
[53] Y.Li, Koszul duality via suspending Lefschetz fibrations, J. Topol.12 (2019), no. 4, 1174-1245. · Zbl 1477.53108
[54] Y.Li, Exact Calabi‐Yau categories and odd‐dimensional Lagrangian spheres, arXiv:1907.09257.
[55] Y.Li, Nonexistence of exact Lagrangian tori in affine conic bundles over \(\mathbb{C}^n\), arXiv:2104.10050. · Zbl 1521.53063
[56] E.Looijenga, The smoothing components of a triangle singularity. II., Math. Ann.269 (1984), no. 3, 357-387. · Zbl 0568.14003
[57] E.Looijenga, Compactifications defined by arrangements. II. Locally symmetric varieties of type IV, Duke Math. J.119 (2003), no. 3, 527-588. · Zbl 1079.14045
[58] M.Mase and K.Ueda, A note on bimodal singularities and mirror symmetry, Manuscripta Math.146 (2015), no. 1-2, 153-177. · Zbl 1405.14104
[59] M.McLean, Talk at SFT VIII workshop at Humboldt University. http://www.math.stonybrook.edu/ markmclean/talks/spectralsequencealltogether.pdf, 2016.
[60] I.Mori, S.Okawa, and K.Ueda, Moduli of noncommutative Hirzebruch surfaces, arXiv:1903.06457.
[61] D.Nadler, Wrapped microlocal sheaves on pairs of pants, arXiv:1604.00114.
[62] Y.Nohara and K.Ueda, Homological mirror symmetry for the quintic 3‐fold, Geom. Topol.16 (2012), no. 4, 1967-2001. · Zbl 1254.53112
[63] D.Orlov, Derived categories of coherent sheaves and triangulated categories of singularities, Algebra, arithmetic, and geometry: in honor of Yu. I. Manin, vol. II, Progr. Math., vol. 270, Birkhäuse Boston Inc., Boston, MA, 2009, pp. 503-531. · Zbl 1200.18007
[64] D. O.Orlov, Triangulated categories of singularities, and equivalences between Landau‐Ginzburg models, Mat. Sb.197 (2006), no. 12, 117-132; translation in Sb. Math. 197 (2006), no. 11-12, 1827-1840. · Zbl 1161.14301
[65] A.Polishchuk, Moduli of curves as moduli of \(A_\infty\) structures, Duke Math. J.166 (2017), no. 15, 2871-2924. · Zbl 1401.14099
[66] A.Preygel, Thom‐Sebastiani & duality for matrix factorizations, arXiv:1101.5834.
[67] E.Segal, The closed state space of affine Landau‐Ginzburg B‐models, J. Noncommut. Geom.7 (2013), no. 3, 857-883. · Zbl 1286.14003
[68] P.Seidel, Graded Lagrangian submanifolds, Bull. Soc. Math. France128 (2000), no. 1, 103-149. · Zbl 0992.53059
[69] P.Seidel, Fukaya categories and deformations, Proceedings of the International Congress of Mathematicians, vol. II, Higher Education Press, Beijing, 2002, pp. 351-360. · Zbl 1014.53052
[70] P.Seidel, A biased view of symplectic cohomology. Current developments in mathematics, International Press, Somerville, MA, 2008, pp. 211-253. · Zbl 1165.57020
[71] P.Seidel, Homological mirror symmetry for the quartic surface, Mem. Amer. Math. Soc.236 (2015), no. 1116, vi+129. · Zbl 1334.53091
[72] N.Sheridan, Homological mirror symmetry for Calabi-Yau hypersurfaces in projective space, Invent. Math.199 (2015), no. 1, 1-186. · Zbl 1344.53073
[73] N.Sheridan and I.Smith, Homological mirror symmetry for generalized Greene-Plesser mirrors, Invent. Math.224 (2021), no. 2, 627-682. · Zbl 1506.14087
[74] I.Shipman, A geometric approach to Orlov’s theorem, Compos. Math.148 (2012), 1365-1389. · Zbl 1253.14019
[75] I.Smith and M.Wemyss, Double bubble plumbings and two‐curve flops, arXiv:2010.10114. · Zbl 1518.14058
[76] D. I.Smyth, Modular compactifications of the space of pointed elliptic curves I, Compos. Math.147 (2011), no. 3, 877-913. · Zbl 1223.14031
[77] A.Takahashi, Weighted projective lines associated to regular systems of weights of dual type, arXiv:0711.3907v1. · Zbl 1213.14075
[78] A.Takahashi, Weighted projective lines associated to regular systems of weights of dual type. New developments in algebraic geometry, integrable systems and mirror symmetry (RIMS, Kyoto, 2008), Adv. Stud. Pure Math., vol. 59, Math. Soc. Japan, Tokyo, 2010, pp. 371-388. · Zbl 1213.14075
[79] B.Toën, The homotopy theory of dg‐categories and derived Morita theory, Invent. Math.167 (2007), no. 3, 615-667. · Zbl 1118.18010
[80] K.Ueda, Homological mirror symmetry and simple elliptic singularities, arXiv:math/0604361.
[81] K.Ueda, Hyperplane sections and stable derived categories, Proc. Amer. Math. Soc.142 (2014), no. 9, 3019-3028. · Zbl 1306.13007
[82] K.Ueda, Mirror symmetry and K3 surfaces, Handbook for mirror symmetry of Calabi-Yau and Fano manifolds, Adv. Lect. Math., vol. 47, Int. Press, Boston, MA, 2019, pp. 483-512.
[83] M.Van den Bergh, Noncommutative quadrics, Int. Math. Res. Not.2011, no. 17, 3983-4026. · Zbl 1311.14003
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.