×

Extremal transitions via quantum Serre duality. (English) Zbl 1529.81047

Summary: Two varieties \(Z\) and \({\widetilde{Z}}\) are said to be related by extremal transition if there exists a degeneration from \(Z\) to a singular variety \({\overline{Z}}\) and a crepant resolution \({\widetilde{Z}} \rightarrow{\overline{Z}}\). In this paper we compare the genus-zero Gromov-Witten theory of toric hypersurfaces related by extremal transitions arising from toric blow-up. We show that the quantum \(D\)-module of \({\widetilde{Z}}\), after analytic continuation and restriction of a parameter, recovers the quantum \(D\)-module of \(Z\). The proof provides a geometric explanation for both the analytic continuation and restriction parameter appearing in the theorem.

MSC:

81P68 Quantum computation
68Q85 Models and methods for concurrent and distributed computing (process algebras, bisimulation, transition nets, etc.)
32S35 Mixed Hodge theory of singular varieties (complex-analytic aspects)
14M25 Toric varieties, Newton polyhedra, Okounkov bodies
35B44 Blow-up in context of PDEs
32D15 Continuation of analytic objects in several complex variables
52A05 Convex sets without dimension restrictions (aspects of convex geometry)

References:

[1] Abramovich, D.; Graber, T.; Vistoli, A., Gromov-Witten theory of Deligne-Mumford stacks, Am. J. Math., 130, 5, 1337-1398 (2008) · Zbl 1193.14070 · doi:10.1353/ajm.0.0017
[2] Abramovich, D.; Vistoli, A., Compactifying the space of stable maps, J. Am. Math. Soc., 15, 1, 27-75 (2002) · Zbl 0991.14007 · doi:10.1090/S0894-0347-01-00380-0
[3] Aspinwall, PS, Exoflops in two dimensions, J. High Energy Phys., 2015, 7, 104 (2015) · Zbl 1388.81472 · doi:10.1007/JHEP07(2015)104
[4] Avram, AC; Candelas, P.; Jančić, D.; Mandelberg, M., On the connectedness of the moduli space of Calabi-Yau manifolds, Nuclear Phys. B, 465, 3, 458-472 (1996) · Zbl 0896.14027 · doi:10.1016/0550-3213(96)00058-2
[5] Avram, AC; Kreuzer, M.; Mandelberg, M.; Skarke, H., The web of Calabi-Yau hypersurfaces in toric varieties, Nuclear Phys. B, 505, 3, 625-640 (1997) · Zbl 0896.14026 · doi:10.1016/S0550-3213(97)00582-8
[6] Behrend, K.; Fantechi, B., The intrinsic normal cone, Invent. Math., 128, 1, 45-88 (1997) · Zbl 0909.14006 · doi:10.1007/s002220050136
[7] Borisov, LA; Chen, L.; Smith, GG, The orbifold Chow ring of toric Deligne-Mumford stacks, J. Am. Math. Soc., 18, 1, 193-215 (2005) · Zbl 1178.14057 · doi:10.1090/S0894-0347-04-00471-0
[8] Borisov, LA; Paul Horja, R., Applications of homological mirror symmetry to hypergeometric systems: duality conjectures, Adv. Math., 271, 153-187 (2015) · Zbl 1334.14024 · doi:10.1016/j.aim.2014.11.020
[9] Bott, R.; Loring, WT, Differential Forms in Algebraic Topology. Graduate Texts in Mathematics (1982), New York: Springer, New York · Zbl 0496.55001 · doi:10.1007/978-1-4757-3951-0
[10] Bryan, J., Graber, T.: The crepant resolution conjecture. In: Algebraic Geometry—Seattle 2005. Part 1, Volume 80 of Proceedings of Symposium on Pure Mathematics, pp 23-42. Amer. Math. Soc., Providence, RI, (2009) · Zbl 1198.14053
[11] Chiang T.-M., Greene B.R., Gross M., Kanter Y.: Black hole condensation and the web of Calabi-Yau manifolds, vol 46, pp. \(82-95. S\)-duality and mirror symmetry (Trieste, 1995) · Zbl 0957.32502
[12] Ciocan-Fontanine, I.; Kim, B., Moduli stacks of stable toric quasimaps, Adv. Math., 225, 6, 3022-3051 (2010) · Zbl 1203.14014 · doi:10.1016/j.aim.2010.05.023
[13] Coates, T.; Corti, A.; Iritani, H.; Tseng, H-H, A mirror theorem for toric stacks, Compos. Math., 151, 10, 1878-1912 (2015) · Zbl 1330.14093 · doi:10.1112/S0010437X15007356
[14] Coates, T.; Givental, A., Quantum Riemann-Roch, Lefschetz Serre. Ann. Math. (2), 165, 1, 15-53 (2007) · Zbl 1189.14063 · doi:10.4007/annals.2007.165.15
[15] Coates, T.; Iritani, H.; Jiang, Y., The crepant transformation conjecture for toric complete intersections, Adv. Math., 329, 1002-1087 (2018) · Zbl 1394.14036 · doi:10.1016/j.aim.2017.11.017
[16] Coates, T.; Iritani, H.; Tseng, H-H, Wall-crossings in toric Gromov-Witten theory. I. Crepant examples, Geom. Topol., 13, 5, 2675-2744 (2009) · Zbl 1184.53086 · doi:10.2140/gt.2009.13.2675
[17] Coates, T.; Ruan, Y., Quantum cohomology and crepant resolutions: a conjecture, Ann. Inst. Fourier (Grenoble), 63, 2, 431-478 (2013) · Zbl 1275.53083 · doi:10.5802/aif.2766
[18] Cox, DA, The functor of a smooth toric variety, Tohoku Math. J. (2), 47, 2, 251-262 (1995) · Zbl 0828.14035 · doi:10.2748/tmj/1178225594
[19] Cox, DA; Katz, S., Mirror Symmetry and Algebraic Geometry. Mathematical Surveys and Monographs (1999), Providence: American Mathematical Society, Providence · Zbl 0951.14026 · doi:10.1090/surv/068
[20] Cox, DA; Little, JB; Schenck, HK, Toric Varieties. Graduate Studies in Mathematics (2011), Providence: American Mathematical Society, Providence · Zbl 1223.14001
[21] Favero, D.; Kelly, TL, Derived categories of BHK mirrors, Adv. Math., 352, 943-980 (2019) · Zbl 1444.14076 · doi:10.1016/j.aim.2019.06.013
[22] Fulton, W., Intersection Theory. Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)] (1984), Berlin: Springer, Berlin · Zbl 0541.14005
[23] Givental, AB, Equivariant Gromov-Witten invariants, Int. Math. Res. Not., 13, 613-663 (1996) · Zbl 0881.55006 · doi:10.1155/S1073792896000414
[24] Iritani, H., An integral structure in quantum cohomology and mirror symmetry for toric orbifolds, Adv. Math., 222, 3, 1016-1079 (2009) · Zbl 1190.14054 · doi:10.1016/j.aim.2009.05.016
[25] Iritani, H., Quantum cohomology and periods, Ann. Inst. Fourier (Grenoble), 61, 7, 2909-2958 (2011) · Zbl 1300.14055 · doi:10.5802/aif.2798
[26] Iritani, H.; Mann, E.; Mignon, T., Quantum Serre theorem as a duality between quantum \(D\)-modules, Int. Math. Res. Not., 9, 2828-2888 (2016) · Zbl 1404.14066 · doi:10.1093/imrn/rnv215
[27] Iritani, H.; Xiao, J., Extremal transition and quantum cohomology: examples of toric degeneration, Kyoto J. Math., 56, 4, 873-905 (2016) · Zbl 1360.14132 · doi:10.1215/21562261-3664959
[28] Lee, Y-P; Lin, H-W; Wang, C-L, Flops, motives, and invariance of quantum rings, Ann. Math. (2), 172, 1, 243-290 (2010) · Zbl 1272.14040 · doi:10.4007/annals.2010.172.243
[29] Lee, Y-P; Lin, H-W; Wang, C-L, Towards \(a+b\) theory in conifold transitions for Calabi-Yau threefolds, J. Differ. Geom., 110, 3, 495-541 (2018) · Zbl 1423.14242 · doi:10.4310/jdg/1542423628
[30] Li, A-M; Ruan, Y., Symplectic surgery and Gromov-Witten invariants of Calabi-Yau 3-folds, Invent. Math., 145, 1, 151-218 (2001) · Zbl 1062.53073 · doi:10.1007/s002220100146
[31] Lian, BH; Liu, K.; Yau, S-T, Mirror principle. I, Asian J. Math., 1, 4, 729-763 (1997) · Zbl 0953.14026 · doi:10.4310/AJM.1997.v1.n4.a5
[32] Mavlyutov, AR, On the chiral ring of Calabi-Yau hypersurfaces in toric varieties, Compos. Math., 138, 3, 289-336 (2003) · Zbl 1117.14052 · doi:10.1023/A:1027367922964
[33] Mi, R.: Cubic extremal transition and Gromov-Witten theory. arXiv:1711.11014
[34] Mi, R.: Gromov-Witten theory under degree-4 type II extremal transitions. arXiv:1810.05783 · Zbl 1497.14113
[35] Morrison, DR, Through the looking glass, Mirror Symmetry, III (Montreal, PQ, 1995), Volume 10 of AMS/IP Advanced Mathematical Studies, 263-277 (1999), Providence: American Mathematical Society, Providence · Zbl 0935.32020
[36] Ottaviani, G., Varieta’ Proiettive di Codimensione Piccola (1995), Aracne, Roma: IDdAM course, Aracne, Roma
[37] Reid, M., The moduli space of \(3\)-folds with \(K=0\) may nevertheless be irreducible, Math. Ann., 278, 1-4, 329-334 (1987) · Zbl 0649.14021 · doi:10.1007/BF01458074
[38] Shoemaker, M.: Narrow quantum D-modules and quantum Serre duality. To appear in Ann. Inst Fourier (Grenoble) (2018)
[39] The Stacks project authors. The stacks project. https://stacks.math.columbia.edu (2020)
[40] Toen, B., Théorèmes de Riemann-Roch pour les champs de Deligne-Mumford, K-Theory, 18, 1, 33-76 (1999) · Zbl 0946.14004 · doi:10.1023/A:1007791200714
[41] Tseng, H-H, Orbifold quantum Riemann-Roch, Lefschetz and Serre, Geom. Topol., 14, 1, 1-81 (2010) · Zbl 1178.14058 · doi:10.2140/gt.2010.14.1
[42] Wang, S-S, On the connectedness of the standard web of Calabi-Yau 3-folds and small transitions, Asian J. Math., 22, 6, 981-1003 (2018) · Zbl 1441.14134 · doi:10.4310/AJM.2018.v22.n6.a1
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.