×

A simple formula for the Picard number of \(K3\) surfaces of BHK type. (English) Zbl 1460.14081

Summary: The Berglund-Hübsch-Krawitz (BHK) mirror symmetry construction applies to certain types of Calabi-Yau varieties that are birational to finite quotients of Fermat varieties. Their definition involves a matrix \(A\) and a certain finite abelian group \(G\), and we denote the corresponding Calabi-Yau variety by \(Z_{A,G}\). The transpose matrix \(A^T\) and the so-called dual group \(G^T\) give rise to the BHK mirror variety \(Z_{A^T,G^T}\). In the case of dimension 2, the surface \(Z_{A,G}\) is a K3 surface of BHK type. Let \(Z_{A,G}\) be a K3 surface of BHK type, with BHK mirror \(Z_{A^T,G^T}\). Using work of Shioda, Kelly has shown that the geometric Picard number \(\rho (Z_{A,G})\) of \(Z_{A,G}\) may be expressed in terms of a certain subset of the dual group \(G^T\). We simplify this formula significantly to show that \(\rho (Z_{A,G})\) depends only upon the degree of the mirror polynomial \(F_{A^T}\).

MSC:

14J28 \(K3\) surfaces and Enriques surfaces
14C22 Picard groups
14J33 Mirror symmetry (algebro-geometric aspects)

References:

[1] M. Artebani, S. Boissière, and A. Sarti, The Berglund-Hübsch-Chiodo-Ruan mirror symmetry for K3 surfaces, J. Math. Pures Appl. (9) 102 (2014), no. 4, 758-781. Zentralblatt MATH: 1315.14051
Digital Object Identifier: doi:10.1016/j.matpur.2014.02.005
· Zbl 1315.14051 · doi:10.1016/j.matpur.2014.02.005
[2] P. Berglund and M. Henningson, Landau-Ginzburg orbifolds, mirror symmetry and the elliptic genus, Nuclear Phys. B 433 (1995), no. 2, 311-332. Mathematical Reviews (MathSciNet): MR1310310
Zentralblatt MATH: 0899.58068
Digital Object Identifier: doi:10.1016/0550-3213(94)00389-V
· Zbl 0899.58068 · doi:10.1016/0550-3213(94)00389-V
[3] P. Berglund and T. Hübsch, A generalized construction of mirror manifolds, Nuclear Phys. B 393 (1993), no. 1-2, 377-391. · Zbl 1245.14039
[4] P. Comparin, C. Lyons, N. Priddis, and R. Suggs, The mirror symmetry of K3 surfaces with non-symplectic automorphisms of prime order, Adv. Theor. Math. Phys. 18 (2014), no. 6, 1335-1368. Zentralblatt MATH: 1346.14100
Digital Object Identifier: doi:10.4310/ATMP.2014.v18.n6.a4
Project Euclid: euclid.atmp/1417707821
· Zbl 1346.14100 · doi:10.4310/ATMP.2014.v18.n6.a4
[5] P. Comparin and N. Priddis, BHK mirror symmetry for K3 surfaces with non-symplectic automorphism, preprint, arXiv:1704.00354v2 [math.AG]. arXiv: 1704.00354v2
Zentralblatt MATH: 1346.14100
Digital Object Identifier: doi:10.4310/ATMP.2014.v18.n6.a4
Project Euclid: euclid.atmp/1417707821
· Zbl 1346.14100 · doi:10.4310/ATMP.2014.v18.n6.a4
[6] I. Dolgachev, “Weighted projective varieties” in Group Actions and Vector Fields (Vancouver, 1981), Lecture Notes in Math. 956, Springer, Berlin, 1982, 34-71. · Zbl 0516.14014
[7] Y. Goto, “\(K3\) surfaces with symplectic group actions” in Calabi-Yau Varieties and Mirror Symmetry (Toronto, 2001), Fields Inst. Commun. 38, Amer. Math. Soc., Providence, 2003, 167-182. Mathematical Reviews (MathSciNet): MR2019151
· Zbl 1055.14043
[8] D. Huybrechts, Lectures on K3 Surfaces, Cambridge Stud. Adv. Math. 158, Cambridge Univ. Press, Cambridge, 2016. Mathematical Reviews (MathSciNet): MR3586372
Zentralblatt MATH: 1360.14099
· Zbl 1360.14099
[9] A. R. Iano-Fletcher, “Working with weighted complete intersections” in Explicit Birational Geometry of 3-Folds, London Math. Soc. Lecture Note Ser. 281, Cambridge Univ. Press, Cambridge, 2000, 101-173. Mathematical Reviews (MathSciNet): MR1798982
Zentralblatt MATH: 0960.14027
· Zbl 0960.14027
[10] H. Inose, On certain Kummer surfaces which can be realized as non-singular quartic surfaces in \(P^3\), J. Fac. Sci. Univ. Tokyo Sect. IA Math. 23 (1976), no. 3, 545-560. Zentralblatt MATH: 0344.14009
· Zbl 0344.14009
[11] Y. Ito and M. Reid, “The McKay correspondence for finite subgroups of \(\text{SL}(3,\mathbf{C})\)” in Higher-Dimensional Complex Varieties (Trento, 1994), de Gruyter, Berlin, 1996, 221-240. · Zbl 0894.14024
[12] T. L. Kelly, Berglund-Hübsch-Krawitz mirrors via Shioda maps, Adv. Theor. Math. Phys. 17 (2013), no. 6, 1425-1449. Zentralblatt MATH: 1316.14076
Digital Object Identifier: doi:10.4310/ATMP.2013.v17.n6.a8
Project Euclid: euclid.atmp/1408626548
· Zbl 1316.14076 · doi:10.4310/ATMP.2013.v17.n6.a8
[13] T. L. Kelly, “Picard ranks of K3 surfaces of BHK type” in Calabi-Yau Varieties: Arithmetic, Geometry and Physics, Fields Inst. Monogr. 34, Fields Inst. Res. Math. Sci., Toronto, 2015, 45-63. Zentralblatt MATH: 1329.14077
· Zbl 1329.14077
[14] M. Krawitz, FJRW rings and Landau-Ginzburg mirror symmetry, Ph.D. dissertation, University of Michigan, Ann Arbor, Michigan, 2010. Mathematical Reviews (MathSciNet): MR2801653
Zentralblatt MATH: 1250.81087
· Zbl 1250.81087
[15] M. Kreuzer and H. Skarke, On the classification of quasihomogeneous functions, Comm. Math. Phys. 150 (1992), no. 1, 137-147. Zentralblatt MATH: 0767.57019
Digital Object Identifier: doi:10.1007/BF02096569
Project Euclid: euclid.cmp/1104251786
· Zbl 0767.57019 · doi:10.1007/BF02096569
[16] D. R. Morrison, On \(K3\) surfaces with large Picard number, Invent. Math. 75 (1984), no. 1, 105-121. · Zbl 0509.14034
[17] M. Reid, “Canonical \(3\)-folds” in Journées de Géometrie Algébrique d’Angers, Juillet 1979/Algebraic Geometry, Angers, 1979, Sijthoff and Noordhoff, Alphen aan den Rijn, 1980, 273-310. · Zbl 0451.14014
[18] T. Shioda, The Hodge conjecture for Fermat varieties, Math. Ann. 245 (1979), no. 2, 175-184. Zentralblatt MATH: 0403.14007
Digital Object Identifier: doi:10.1007/BF01428804
· Zbl 0403.14007 · doi:10.1007/BF01428804
[19] T. Shioda, An explicit algorithm for computing the Picard number of certain algebraic surfaces, Amer. J. Math. 108 (1986), no. 2, 415-432. Zentralblatt MATH: 0602.14033
Digital Object Identifier: doi:10.2307/2374678
· Zbl 0602.14033 · doi:10.2307/2374678
[20] R. van Luijk, K3 surfaces with Picard number one and infinitely many rational points, Algebra Number Theory 1 (2007), no. 1, 1-15. Zentralblatt MATH: 1123.14022
Digital Object Identifier: doi:10.2140/ant.2007.1.1
Project Euclid: euclid.ant/1513796986
· Zbl 1123.14022 · doi:10.2140/ant.2007.1.1
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.