×

Picard ranks of \(K3\) surfaces of BHK type. (English) Zbl 1329.14077

Laza, Radu (ed.) et al., Calabi-Yau varieties: arithmetic, geometry and physics. Lecture notes on concentrated graduate courses, Toronto, Canada, July 1 – December 31, 2013. Toronto: The Fields Institute for Research in the Mathematical Sciences; New York, NY: Springer (ISBN 978-1-4939-2829-3/hbk; 978-1-4939-2830-9/ebook). Fields Institute Monographs 34, 45-63 (2015).
Summary: We give an explicit formula for the Picard ranks of \(K3\) surfaces that have Berglund-Hübsch-Krawitz (BHK) Mirrors over an algebraically closed field, both in characteristic zero and in positive characteristic. These \(K3\) surfaces are those that are certain orbifold quotients of weighted Delsarte surfaces. The proof is an updated classical approach of Shioda using rational maps to relate the transcendental lattice of a Fermat hypersurface of higher degree to that of the \(K3\) surfaces in question. The end result shows that the Picard ranks of a \(K3\) surface of BHK-type and its BHK mirror are intrinsically intertwined. We end with an example of BHK mirror surfaces that, over certain fields, are supersingular.
For the entire collection see [Zbl 1329.14008].

MSC:

14J28 \(K3\) surfaces and Enriques surfaces
Full Text: DOI

References:

[1] Artebani, M.; Boissière, S.; Sarti, A., The Berglund-Hübsch-Chiodo-Ruan mirror symmetry for K3 surfaces, J. Math. Pure. Appl., 102, 758-781 (2014) · Zbl 1315.14051 · doi:10.1016/j.matpur.2014.02.005
[2] Berglund, P.; Hübsch, T., A generalized construction of mirror manifolds, Nucl. Phys., B393, 377-391 (1993) · Zbl 1245.14039 · doi:10.1016/0550-3213(93)90250-S
[3] Bini, G., Quotients of hypersurfaces in weighted projective space, Adv. Geom., 11, 4, 653-668 (2011) · Zbl 1235.14035 · doi:10.1515/advgeom.2011.029
[4] Bruzzo, U.; Grassi, A., Picard group of hypersurfaces in toric 3-folds, Int. J. Math., 23, 2, 14 (2012) · Zbl 1252.14031 · doi:10.1142/S0129167X12500280
[5] Chiodo, A.; Ruan, Y., LG/CY correspondence: the state space isomorphism, Adv. Math., 227, 6, 2157-2188 (2011) · Zbl 1205.14069 · doi:10.1016/j.aim.2011.04.011
[6] Comparin, P.; Lyons, C.; Priddis, N.; Suggs, R., The mirror symmetry of K3 surfaces with non-symplectic automorphisms of prime order, Adv. Theor. Math. Phys., 18, 6, 1335-1368 (2014) · Zbl 1346.14100 · doi:10.4310/ATMP.2014.v18.n6.a4
[7] Degtyarev, A.: On the Picard group of a Delsarte surface. arxiv: 1307.0382 (2013)
[8] Dimca, A., Singularities and coverings of weighted complete intersections, J. Reine. Agnew. Math., 366, 184-193 (1986) · Zbl 0576.14047
[9] Dimca, A.; Dimiev, S., On analytic coverings of weighted projective spaces, Bull. Lond. Math. Soc., 17, 234-238 (1985) · Zbl 0546.14006 · doi:10.1112/blms/17.3.234
[10] Goto, Y.: K3 surfaces with symplectic group actions. In: Calabi-Yau Varieties and Mirror Symmetry. Fields Institute Communications, vol. 38, pp. 167-182. American Mathematical Society, Providence (2003) · Zbl 1055.14043
[11] Greene, B. R.; Plesser, M. R., Duality in Calabi-Yau moduli space, Nucl. Phys. B, 338, 15-37 (1990) · Zbl 1287.03006 · doi:10.1016/0550-3213(90)90622-K
[12] Kelly, T. L., Berglund-Hübsch-Krawitz mirrors via Shioda maps, Adv. Theor. Math. Phys., 17, 6, 1425-1449 (2013) · Zbl 1316.14076 · doi:10.4310/ATMP.2013.v17.n6.a8
[13] Krawitz, M.: FJRW rings and Landau-Ginzburg mirror symmetry. arXiv: 0906.0796 · Zbl 1250.81087
[14] Schütt, M., Picard numbers of quintic surfaces, Proc. Lond. Math. Soc., 110, 2, 428-476 (2015) · Zbl 1316.14073 · doi:10.1112/plms/pdu056
[15] Shioda, T., The Hodge conjecture for Fermat varieties, Math. Ann., 245, 2, 175-184 (1979) · Zbl 0403.14007 · doi:10.1007/BF01428804
[16] Shioda, T., An explicit algorithm for computing the Picard number of certain algebraic surfaces, Am. J. Math., 108, 2, 415-432 (1986) · Zbl 0602.14033 · doi:10.2307/2374678
[17] Tate, J.: Algebraic cycles and poles of zeta functions. In: Arithmetical Algebraic Geometry (Proceedings Conference Purdue University, 1963), pp. 93-110. Harper and Row, New York (1965) · Zbl 0213.22804
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.