×

Word problems in Elliott monoids. (English) Zbl 1404.46061

Summary: Algorithmic issues concerning Elliott local semigroups are seldom considered in the literature, although these combinatorial structures completely classify AF algebras. In general, the addition operation of an Elliott local semigroup is partial, but for every AF algebra \(\mathfrak{B}\) whose Murray-von Neumann order of projections is a lattice, this operation is uniquely extendible to the addition of an involutive monoid \(E(\mathfrak{B})\). Let \(\mathfrak{M}_1\) be the Farey AF algebra introduced by the present author in 1988 [D. Mundici, Adv. Math. 68, No. 1, 23–39 (1988; Zbl 0678.06008)] and rediscovered by F. Boca in 2008 [F. P. Boca, Can. J. Math. 60, No. 5, 975–1000 (2008; Zbl 1158.46039)]. The freeness properties of the involutive monoid \(E(\mathfrak{M}_1)\) yield a natural word problem for every AF algebra \(\mathfrak{B}\) with singly generated \(E(\mathfrak{B})\), because \(\mathfrak{B}\) is automatically a quotient of \(\mathfrak{M}_1\). Given two formulas \(\phi\) and \(\psi\) in the language of involutive monoids, the problem asks to decide whether \(\phi\) and \(\psi\) code the same equivalence of projections of \(\mathfrak{B}\). This mimics the classical definition of the word problem of a group presented by generators and relations. We show that the word problem of \(\mathfrak{M}_1\) is solvable in polynomial time, and so is the word problem of the Behncke-Leptin algebras \(\mathcal{A}_{n, k}\), and of the Effros-Shen algebras \(\mathfrak{F}_\theta\), for \(\theta \in [0, 1] \setminus \mathbb{Q}\) a real algebraic number, or \(\theta = 1 / e\). We construct a quotient of \(\mathfrak{M}_1\) having a Gödel incomplete word problem, and show that no primitive quotient of \(\mathfrak{M}_1\) is Gödel incomplete.

MSC:

46L80 \(K\)-theory and operator algebras (including cyclic theory)
47L30 Abstract operator algebras on Hilbert spaces
03D40 Word problems, etc. in computability and recursion theory
06B25 Free lattices, projective lattices, word problems
06D35 MV-algebras
06F20 Ordered abelian groups, Riesz groups, ordered linear spaces
08A50 Word problems (aspects of algebraic structures)
20F10 Word problems, other decision problems, connections with logic and automata (group-theoretic aspects)
47L40 Limit algebras, subalgebras of \(C^*\)-algebras
68Q17 Computational difficulty of problems (lower bounds, completeness, difficulty of approximation, etc.)
68Q19 Descriptive complexity and finite models

References:

[1] Aguilar, K., Quantum metrics on approximately finite dimensional algebras, Electronic Theses and Dissertations Graduate Studies, vol. 1277, (2017), University of Denver
[2] Aguzzoli, S., The complexity of mcnaughton functions of one variable, Adv. in Appl. Math., 21, 58-77, (1998) · Zbl 0911.03004
[3] Bailey, D.; Borwein, P.; Plouffe, S., On the rapid computation of various polylogarithmic constants, Math. Comp., 66, 218, 903-913, (1997) · Zbl 0879.11073
[4] Behncke, H.; Leptin, H., C*-algebras with a two-point dual, J. Funct. Anal., 10, 330-335, (1972) · Zbl 0235.46089
[5] Bigard, A.; Keimel, K.; Wolfenstein, S., Groupes et anneaux Réticulés, Lecture Notes in Mathematics, vol. 608, (1971), Springer Berlin · Zbl 0384.06022
[6] Boca, F., An AF algebra associated with the Farey tessellation, Canad. J. Math., 60, 975-1000, (2008) · Zbl 1158.46039
[7] Boyle, M.; Marcus, B.; Trow, P., Resolving maps and the dimension group for shifts of finite type, Memoirs of the American Mathematical Society, vol. 377, (1987) · Zbl 0651.54018
[8] Bratteli, O., Inductive limits of finite dimensional \(C^\ast\)-algebras, Trans. Amer. Math. Soc., 171, 195-234, (1972) · Zbl 0264.46057
[9] Bratteli, O.; Robinson, D. W., Operator algebras and quantum statistical mechanics I, II, (1979), Springer Berlin · Zbl 0421.46048
[10] Bratteli, O.; Jorgensen, P.; Kim, K. H.; Roush, F., Non-stationarity of isomorphism between AF-algebras defined by stationary Bratteli diagrams, Ergodic Theory Dynam. Systems, 20, 1639-1656, (2000) · Zbl 0982.46042
[11] Bratteli, O.; Jorgensen, P.; Kim, K. H.; Roush, F., Decidability of the isomorphism problem for stationary AF-algebras and the associated ordered simple dimension groups, Ergodic Theory Dynam. Systems, Ergodic Theory Dynam. Systems, 22, 633-1655, (2002), Erratum: · Zbl 1007.46046
[12] Busaniche, M.; Mundici, D., Geometry of Robinson consistency in łukasiewicz logic, Ann. Pure Appl. Logic, 147, 1-22, (2007) · Zbl 1125.03016
[13] Chang, C. C., Algebraic analysis of many valued logics, Trans. Amer. Math. Soc., 88, 467-490, (1958) · Zbl 0084.00704
[14] Chang, C. C., A new proof of the completeness of the łukasiewicz axioms, Trans. Amer. Math. Soc., 93, 74-80, (1959) · Zbl 0093.01104
[15] Cignoli, R.; D’Ottaviano, I. M.L.; Mundici, D., Algebraic foundations of many-valued reasoning, Trends in Logic, vol. 7, (2000), Kluwer Academic Publishers Dordrecht · Zbl 0937.06009
[16] Cignoli, R.; Dubuc, E.; Mundici, D., Extending stone duality to multisets, J. Pure Appl. Algebra, 189, 37-59, (2004) · Zbl 1055.06004
[17] Cignoli, R.; Elliott, G. A.; Mundici, D., Reconstructing \(C^\ast\)-algebras from their murray von Neumann orders, Adv. Math., 101, 166-179, (1993) · Zbl 0823.46053
[18] Eckhardt, C., A noncommutative Gauss map, Math. Scand., 108, 233-250, (2011) · Zbl 1228.46060
[19] Effros, E. G., Dimensions and C*-algebras, CBMS Regional Conference Series in Mathematics, vol. 46, (1981), Amer. Math. Soc. Providence, RI
[20] Elliott, G. A., On the classification of inductive limits of sequences of semisimple finite-dimensional algebras, J. Algebra, 38, 29-44, (1976) · Zbl 0323.46063
[21] Elliott, G. A., On totally ordered groups and \(K_0\), (Lecture Notes in Mathematics, vol. 734, (1979), Springer Berlin), 1-49 · Zbl 0418.06010
[22] Emch, G. G., Mathematical and conceptual foundations of 20th-century physics, (1984), North-Holland Amsterdam · Zbl 0591.01020
[23] Goodearl, K. R., Notes on real and complex C*-algebras, Shiva Math. Series, vol. 5, (1982), Birkhäuser Boston · Zbl 0495.46039
[24] Goodearl, K. R., Partially ordered abelian groups with interpolation, Mathematical Surveys and Monographs, vol. 20, (1986), American Mathematical Society · Zbl 0589.06008
[25] Jónsson, B.; Tarski, A., On two properties of free algebras, Math. Scand., 9, 95-101, (1961) · Zbl 0111.02002
[26] Ko, K.-I., Complexity theory of real functions, (1991), Birkhäuser Boston, Basel, Berlin · Zbl 0791.03019
[27] Lang, S., Introduction to Diophantine approximations, (1966), Addison-Wesley Reading, MA · Zbl 0144.04005
[28] Lazar, A. J., AF algebras with a lattice of projections, Math. Scand., 50, 135-144, (1982) · Zbl 0471.46040
[29] Lazar, A. J., AF algebras with directed sets of finite dimensional *-subalgebras, Trans. Amer. Math. Soc., 275, 709-721, (1983) · Zbl 0531.46042
[30] Manin, Yu. I., A course in mathematical logic for mathematicians, Graduate Texts in Mathematics, vol. 53, (2010), Springer New York, with collaboration with B. Zilber · Zbl 1180.03002
[31] Marra, V.; Reggio, L., Stone duality above dimension zero: axiomatising the algebraic theory of C(X), Adv. Math., 307, 253-287, (2017) · Zbl 1376.03038
[32] Marra, V.; Spada, L., Duality, projectivity, and unification in łukasiewicz logic and MV-algebras, Ann. Pure Appl. Logic, 164, 192-210, (2013) · Zbl 1275.03099
[33] McNaughton, R., A theorem about infinite-valued sentential logic, J. Symbolic Logic, 16, 1-13, (1951) · Zbl 0043.00901
[34] Mishra, B., Algorithmic algebra, Texts and Monographs in Computer Science, (1993), Springer New York · Zbl 0804.13009
[35] Monk, D., Mathematical logic, (1976), Springer Berlin, New York · Zbl 0354.02002
[36] Mundici, D., Interpretation of AF C*-algebras in lukasiewicz sentential calculus, J. Funct. Anal., 65, 15-63, (1986) · Zbl 0597.46059
[37] Mundici, D., Farey stellar subdivisions, ultrasimplicial groups, and \(K_0\) of AF C*-algebras, Adv. Math., 68, 23-39, (1988) · Zbl 0678.06008
[38] Mundici, D., The C*-algebras of three-valued logic, (Proceedings Logic Colloquium 1988, Studies in Logic and the Foundations of Mathematics, (1989), North-Holland Amsterdam), 61-77 · Zbl 0694.03017
[39] Mundici, D., Simple Bratteli diagrams with a Gödel incomplete isomorphism problem, Trans. Amer. Math. Soc., 356, 1937-1955, (2004) · Zbl 1042.46033
[40] Mundici, D., Recognizing the Farey-stern-brocot AF algebra, Rend. Lincei Mat. Appl., 20, 327-338, (2009), dedicated to the memory of Renato Caccioppoli · Zbl 1185.46042
[41] Mundici, D., Revisiting the Farey AF algebra, Milan J. Math., 79, 643-656, (2011) · Zbl 1269.46041
[42] Mundici, D., Advanced łukasiewicz calculus and MV-algebras, Trends in Logic, vol. 35, (2011), Springer Berlin · Zbl 1235.03002
[43] Mundici, D.; Panti, G., Extending addition in Elliott’s local semigroup, J. Funct. Anal., 117, 461-471, (1993) · Zbl 0799.46077
[44] Mundici, D.; Sieg, W., Turing, the Mathematician, (Floyd, J.; Bokulich, A., Philosophical Explorations of the Legacy of Alan Turing: Turing 100, Boston Studies in the Philosophy and History of Science, vol. 324, (2017), Springer International Publishing), 39-62, (Chapter 2) · Zbl 1380.01010
[45] Mundici, D.; Tsinakis, C., Gödel incompleteness in AF C*-algebras, Forum Math., 20, 1071-1084, (2008) · Zbl 1163.46036
[46] Pimsner, M.; Voiculescu, D., Imbedding the irrational rotation \(\operatorname{C}^\ast\)-algebra into an AF-algebra, J. Operator Theory, 4, 201-210, (1980) · Zbl 0525.46031
[47] Sewell, G. L., Quantum theory of collective phenomena, (1986), Clarendon Press Oxford
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.