×

Gödel incompleteness in AF C\(^*\)-algebras. (English) Zbl 1163.46036

Summary: For any (possibly, non-unital) AF \(C^*\)-algebra \(A\) with comparability of projections, let \(D(A)\) be the Elliott partial monoid of \(A\), and \(G(A)\) the dimension group of \(A\) with scale \(D(A)\). For \(D\subseteq D(A)\) a generating set of \(G(A)\), let \(\mathcal P\) be the set of all formal inequalities \(\alpha_1+\cdots+a_k\leq b_1+\cdots+b_l\) satisfied by \(G(A)\) for any \(a_i,b_j\in D\). By Elliott’s classification, \(\mathcal P\) together with the list of all sums \(a_1+\cdots+a_k\in D(A)\) uniquely determines \(A\). Can \(\mathcal P\) be Gödel incomplete, i.e., effectively enumerable but undecidable? We give a negative answer in the case when \(D\) is finite, and a positive answer in the infinite case. We also show that the range of the map \(A\mapsto D(A)\) precisely consists of all countable partial abelian monoids satisfying the following three conditions: (i) \(a+b=a+ c\Rightarrow b = c\), (ii) \(a+b=0\Rightarrow a= b =0\) and (iii) \(\forall a, b\in E\) \(\exists c\in E\) such that either \(a+c= b\) or \(b+c = a\).

MSC:

46L05 General theory of \(C^*\)-algebras
03D99 Computability and recursion theory
06F20 Ordered abelian groups, Riesz groups, ordered linear spaces
20F10 Word problems, other decision problems, connections with logic and automata (group-theoretic aspects)
Full Text: DOI

References:

[1] DOI: 10.2307/2372361 · Zbl 0033.34504 · doi:10.2307/2372361
[2] DOI: 10.1016/0022-1236(72)90031-6 · Zbl 0235.46089 · doi:10.1016/0022-1236(72)90031-6
[3] DOI: 10.1017/S0143385700000912 · Zbl 0982.46042 · doi:10.1017/S0143385700000912
[4] DOI: 10.1017/S014338570100178X · doi:10.1017/S014338570100178X
[5] DOI: 10.1006/aima.1993.1046 · Zbl 0823.46053 · doi:10.1006/aima.1993.1046
[6] DOI: 10.1016/0021-8693(76)90242-8 · Zbl 0323.46063 · doi:10.1016/0021-8693(76)90242-8
[7] Elliott G. A., Lecture Notes in Mathematics 734 pp 1– · doi:10.1007/BFb0103152
[8] DOI: 10.1016/0022-1236(86)90015-7 · Zbl 0597.46059 · doi:10.1016/0022-1236(86)90015-7
[9] DOI: 10.1090/S0002-9947-03-03353-1 · Zbl 1042.46033 · doi:10.1090/S0002-9947-03-03353-1
[10] DOI: 10.1006/jabr.1999.7892 · Zbl 0972.06011 · doi:10.1006/jabr.1999.7892
[11] DOI: 10.1023/A:1018809209768 · doi:10.1023/A:1018809209768
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.