×

Helping you finding an appropriate regularization process. (English) Zbl 1393.49011

The authors survey different approaches related to the regularization of a nonsmooth function. The infimal convolution regularization, which generalizes the Moreau envelope to Banach spaces and to the setting of nonconvex functions, is studied in detail.

MSC:

49J52 Nonsmooth analysis
46N10 Applications of functional analysis in optimization, convex analysis, mathematical programming, economics
46T20 Continuous and differentiable maps in nonlinear functional analysis
Full Text: DOI

References:

[1] Ambrosio, L., Gigli, N., Savaré, G.: Gradient flows: In Metric Spaces and in the Space of Probability Measures. Lectures in Mathematics, ETH Zürich. Birkhäuser, Basel (2008) · Zbl 1145.35001
[2] Asplund, E, Fréchet differentiability of convex functions, Acta Math., 121, 31-47, (1968) · Zbl 0162.17501 · doi:10.1007/BF02391908
[3] Attouch, H.: Variational Convergence of Functions and Operators. Pitman, London (1984) · Zbl 0561.49012
[4] Attouch, H; Azé, D, Approximation and regularization of arbitrary functions in Hilbert spaces by the lasry-Lions method, Ann. Inst. Henri Poincaré, (C), 10, 289-312, (1993) · Zbl 0780.41021 · doi:10.1016/S0294-1449(16)30214-1
[5] Aubin, J.-P., Frankowska, H.: Set-Valued Analysis. Birkhaüser, Boston (1990) · Zbl 0713.49021
[6] Bačák, M; Borwein, JM; Eberhard, A; Mordukhovich, B, Infimal convolutions and Lipschitzian properties of subdifferentials for prox-regular functions in Hilbert spaces, J. Convex Anal., 17, 737-763, (2010) · Zbl 1207.49015
[7] Beauzamy, B.: Introduction to Banach Spaces and Their Geometry. Mathematics Studies, vol. 68. North-Holland, Amsterdam (1982) · Zbl 0491.46014
[8] Beck, A; Teboulle, M, Smoothing and first order methods: a unified framework, SIAM J. Optim., 22, 557-580, (2012) · Zbl 1251.90304 · doi:10.1137/100818327
[9] Benoist, J, Convergence de la dérivée de la régularisée de lasry-Lions, C. R. Acad. Sci. Paris, 315, 941-944, (1992) · Zbl 0772.49009
[10] Benoist, J, Approximation and regularization of arbitrary sets in finite dimensions, Set-Valued Anal., 2, 95-115, (1994) · Zbl 0803.49017 · doi:10.1007/BF01027095
[11] Benyamini, Y, Lindenstrauss, J.: Geometric Nonlinear Functional Analysis. Colloquium Publications, vol. 48. American Mathematical Society, Providence (2000) · Zbl 0946.46002
[12] Bernard, F; Thibault, L, Prox-regular functions in Hilbert spaces, J. Math. Anal. Appl., 303, 1-14, (2005) · Zbl 1085.49020 · doi:10.1016/j.jmaa.2004.06.003
[13] Bernard, F; Thibault, L, Uniform prox-regularity of functions and epigraphs in Hilbert spaces, Nonlinear Anal., 60, 187-207, (2005) · Zbl 1068.49012 · doi:10.1016/j.na.2004.04.015
[14] Bernard, F; Thibault, L; Zlateva, N, Characterizations of prox-regular sets in uniformly convex Banach spaces, J. Convex Anal., 13, 525-559, (2006) · Zbl 1121.49014
[15] Bernard, F; Thibault, L; Zlateva, N, Prox-regular sets and epigraphs in uniformly convex Banach spaces: various regularities and other properties, Trans. Am. Math. Soc., 363, 2211-2247, (2011) · Zbl 1216.49015 · doi:10.1090/S0002-9947-2010-05261-4
[16] Bernard, F; Thibault, L; Zagrodny, D, Integration of primal lower Nice functions in Hilbert spaces, J. Optim. Theory Appl., 124, 561-579, (2005) · Zbl 1079.49015 · doi:10.1007/s10957-004-1174-z
[17] Borwein, JM; Giles, JR, The proximal normal formula in Banach space, Trans. Am. Math. Soc., 302, 371-381, (1987) · Zbl 0632.49007 · doi:10.1090/S0002-9947-1987-0887515-5
[18] Borwein, J.M., Zhu, Q.J.: Techniques of Variational Analysis. CMS Books in Mathematics, vol. 20. Springer, New York (2005) · Zbl 1076.49001
[19] Bougeard, M; Penot, J-P; Pommellet, A, Towards minimal assumptions for the infimal convolution regularization, J. Approx. Theory, 64, 245-270, (1991) · Zbl 0759.49003 · doi:10.1016/0021-9045(91)90062-F
[20] Brezis, H.: Functional Analysis, Sobolev Spaces and Partial Differential Equations. Universitext. Springer, New York (2011) · Zbl 1220.46002
[21] Burke, JV; Hoheisel, T, Epi-convergent smoothing with applications to convex composite functions, SIAM J. Optim., 23, 1457-1479, (2013) · Zbl 1278.49018 · doi:10.1137/120889812
[22] Cabot, A; Jourani, A; Thibault, L, Envelopes for sets and functions: regularization and generalized conjugacy, Mathematika, 63, 383-432, (2017) · Zbl 1376.52018 · doi:10.1112/S0025579316000309
[23] Cannarsa, P., Sinestrari, C.: Semiconcave Functions, Hamilton-Jacobi Equations, and Optimal Control. Birkhäuser, Boston (2004) · Zbl 1095.49003
[24] Cepedello-Boiso, M, Approximation of Lipschitz functions by δ-convex functions in Banach spaces, Isr. J. Math., 106, 269-284, (1998) · Zbl 0920.46010 · doi:10.1007/BF02773472
[25] Cepedello Boiso, M, On regularization in super-reflexive Banach spaces by infimal convolution formulas, Stud. Math., 129, 265-284, (1998) · Zbl 0918.46014 · doi:10.4064/sm-129-3-265-284
[26] Clarke, F.H.: Functional Analysis, Calculus of Variations and Optimal Control. Graduate Texts in Mathematics, vol. 264. Springer-Verlag, London (2013) · Zbl 1277.49001 · doi:10.1007/978-1-4471-4820-3
[27] Colombo, G., Thibault, L.: Prox-regular sets and applications. In: Gao, D. Y., Motreanu, D (eds.) Handbook of Nonconvex Analysis and Applications, pp 99-182. International Press, Somerville (2010) · Zbl 1221.49001
[28] De Giorgi, E; Marino, A; Tosques, M, Problems of evolution in metric spaces and maximal decreasing curve, Atti Accad. Naz. Lincei, Rend. Cl. Sci. Fis. Mat. Nat. (8), 68, 180-187, (1980) · Zbl 0465.47041
[29] Diestel, J.: Geometry of Banach Spaces—Select Topics. Lecture Notes in Mathematics, vol. 485. Springer-Verlag, Berlin Heidelberg (1975) · Zbl 0307.46009 · doi:10.1007/BFb0082079
[30] Fabián, MJ, Sub differentiability and trustworthiness in the light of a new variational principle of Borwein and preiss, Acta Univ. Carol. Math. Phys., 30, 51-56, (1989) · Zbl 0714.49022
[31] Hájek, P; Johanis, M, Smooth approximations, J. Funct. Anal., 259, 561-582, (2010) · Zbl 1200.46073 · doi:10.1016/j.jfa.2010.04.020
[32] Ioffe, A, Euler-Lagrange and Hamiltonian formalisms in dynamic optimization, Trans. Am. Math. Soc., 349, 2871-2900, (1997) · Zbl 0876.49024 · doi:10.1090/S0002-9947-97-01795-9
[33] Johanis, M, Approximation of Lipschitz mappings, Serdica Math. J., 29, 141-148, (2003) · Zbl 1049.46003
[34] Jourani, A; Thibault, L; Zagrodny, D, Differential properties of the Moreau envelope, J. Funct. Anal., 266, 1185-1237, (2014) · Zbl 1296.49018 · doi:10.1016/j.jfa.2013.11.008
[35] Kecis, I; Thibault, L, Subdifferential characterization of s-lower regular function, Appl. Anal., 94, 85-98, (2015) · Zbl 1308.49011 · doi:10.1080/00036811.2013.878970
[36] Kecis, I; Thibault, L, Moreau envelopes of s-lower regular functions, Nonlinear Anal., 127, 157-181, (2015) · Zbl 1325.49022 · doi:10.1016/j.na.2015.06.015
[37] Lasry, J-M; Lions, P-L, A remark on regularization in Hilbert spaces, Isr. J. Math., 55, 257-266, (1986) · Zbl 0631.49018 · doi:10.1007/BF02765025
[38] Lemaréchal, C; Sagastizábal, C, Practical aspects of the Moreau-Yosida regularization: theoretical preliminaries, SIAM J. Optim., 7, 367-385, (1997) · Zbl 0876.49019 · doi:10.1137/S1052623494267127
[39] Levy, AB; Poliquin, RA; Thibault, L, Partial extensions of attouch’s theorem with applications to proto-derivatives of subgradient mappings, Trans. Am. Math. Soc., 347, 1269-1294, (1995) · Zbl 0837.49013
[40] Martínez-Legaz, J-E; Penot, J-P, Regularization by erasement, Math. Scand., 98, 97-124, (2006) · Zbl 1148.46044 · doi:10.7146/math.scand.a-14986
[41] Mazade, M; Thibault, L, Differential variational inequalities with locally prox-regular sets, J. Convex Anal., 19, 1109-1139, (2012) · Zbl 1266.34104
[42] Mordukhovich, BS; Shao, Y, Nonsmooth sequential analysis in asplund spaces, Trans. Am. Math. Soc., 348, 1235-1280, (1996) · Zbl 0881.49009 · doi:10.1090/S0002-9947-96-01543-7
[43] Mordukhovich, B.S.: Variational Analysis and Generalized Differentiation. I. Basic Theory. Grundlehren der Mathematischen Wissenschaften, vol. 330. Springer-Verlag, Berlin Heidelberg (2006) · Zbl 1100.49002 · doi:10.1007/3-540-31247-1
[44] Mordukhovich, B.S.: Variational Analysis and Generalized Differentiation. II. Applications. Grundlehren der Mathematischen Wissenschaften, vol. 331. Springer-Verlag, Berlin Heidelberg (2006) · doi:10.1007/3-540-31246-3
[45] Ngai, HV; Théra, M, Phi-regular functions in asplund spaces, Control Cybern., 36, 755-774, (2007) · Zbl 1168.49018
[46] Ngai, HV; Penot, J-P, Approximately convex functions and approximately monotonic operators, Nonlinear Anal., 66, 547-564, (2007) · Zbl 1113.26011 · doi:10.1016/j.na.2005.11.045
[47] Ngai, HV; Penot, J-P, Paraconvex functions and paraconvex sets, Stud. Math., 184, 1-29, (2008) · Zbl 1181.49014 · doi:10.4064/sm184-1-1
[48] Ngai, HV; Penot, J-P, Approximately convex sets, J. Nonlinear Convex Anal., 8, 337-371, (2007) · Zbl 1181.49016
[49] Ngai, HV; Penot, J-P, Subdifferentiation of regularized functions, Set-Valued Var. Anal., 24, 167-189, (2016) · Zbl 1334.49053 · doi:10.1007/s11228-016-0367-6
[50] Ngai, H.V., Penot, J.-P.: Paraconvex regularization. in preparation · Zbl 0162.17501
[51] Penot, J-P; Bougeard, M, Approximation and decomposition properties of some classes of locally d.c. functions, Math. Program., 41, 195-227, (1988) · Zbl 0666.49005 · doi:10.1007/BF01580764
[52] Penot, J-P; Bougeard, ML, Approximation and decomposition properties of some classes of locally D.C. functions, Math. Program., 41, 195-227, (1988) · Zbl 0666.49005 · doi:10.1007/BF01580764
[53] Penot, J-P, Proximal mappings, J. Approx. Theory, 94, 203-221, (1998) · Zbl 0916.46032 · doi:10.1006/jath.1998.3201
[54] Penot, J.-P.: Calculus Without Derivatives. Graduate Texts in Mathematics, vol. 266. Springer, New York (2013) · Zbl 1264.49014 · doi:10.1007/978-1-4614-4538-8
[55] Penot, J.-P.: Analysis: From Concepts to Applications. Universitext. Springer, London (2016) · Zbl 1366.26002 · doi:10.1007/978-3-319-32411-1
[56] Penot, J-P; Ratsimahalo, R, On the Yosida approximation of operators, Proc. R. Soc. Edinb. Sect. A, 131, 945-966, (2001) · Zbl 1001.47031 · doi:10.1017/S0308210500001207
[57] Poliquin, RA, Integration of subdifferentials of nonconvex functions, Nonlinear Anal., 17, 385-398, (1991) · Zbl 0831.49018 · doi:10.1016/0362-546X(91)90078-F
[58] Poliquin, RA, An extension of attouch’s theorem and its application to second-order epi-differentiation of convexly composite functions, Trans. Am. Math. Soc., 322, 861-874, (1992) · Zbl 0794.49014
[59] Rockafellar, R.T., Wets, R.J.-B.: Variational Analysis. Grundlehren der Mathematishen Wissenschaften, vol. 317. Springer-Verlag, Berlin Heidelberg (2002)
[60] Rolewicz, S, On the coincidence of some subdifferentials in the class of α(⋅)-paraconvex functions, Optimization, 50, 353-360, (2001) · Zbl 1008.52003 · doi:10.1080/02331930108844568
[61] Seeger, R, Smoothing nondifferentiable convex functions: the technique of the rolling ball, Rev. Mat. Apl., 18, 45-60, (1997) · Zbl 0921.49008
[62] Thibault, L; Zagrodny, D, Integration of subdifferentials of lower semicontinuous functions on Banach spaces, J. Math. Anal. Appl., 189, 33-58, (1995) · Zbl 0826.49009 · doi:10.1006/jmaa.1995.1003
[63] Vial, J-P, Strong and weak convexity of sets and functions, Math. Oper. Res., 8, 231-259, (1983) · Zbl 0526.90077 · doi:10.1287/moor.8.2.231
[64] Xu, Z-B; Roach, GF, Characteristic inequalities of uniformly convex and uniformly smooth Banach spaces, J. Math. Anal. Appl., 157, 189-210, (1991) · Zbl 0757.46034 · doi:10.1016/0022-247X(91)90144-O
[65] Zalinescu, C.: Convex Analysis in General Vector Spaces. World Scientific, Singapore (2002) · Zbl 1023.46003 · doi:10.1142/5021
[66] Zhang, K, On various semiconvex relaxations of the squared-distance function, Proc. R. Soc. Edinb. Sect. A, 129, 1309-1323, (1999) · Zbl 0936.49009 · doi:10.1017/S0308210500019405
[67] Zhang, K, Compensated convexity and its applications, Ann. Inst. H. Poincaré, (C) Non Linéaire Anal., 25, 743-771, (2008) · Zbl 1220.26011 · doi:10.1016/j.anihpc.2007.08.001
[68] Zhang, K; Crooks, E; Orlando, A, Compensated convexity, multiscale medial axis maps and sharp regularity of the squared-distance function, SIAM J. Math. Anal., 47, 4289-4331, (2015) · Zbl 1329.26026 · doi:10.1137/140993223
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.