×

Euler-Lagrange and Hamiltonian formalisms in dynamic optimization. (English) Zbl 0876.49024

Summary: We consider dynamic optimization problems for systems governed by differential inclusions. The main focus is on the structure of and interrelations between necessary optimality conditions stated in terms of Euler-Lagrange and Hamiltonian formalisms. The principal new results are: an extension of the recently discovered form of the Euler-Weierstrass condition to nonconvex valued differential inclusions, and a new Hamiltonian condition for convex valued inclusions. In both cases additional attention was given to weakening Lipschitz type requirements on the set-valued mapping. The central role of the Euler type condition is emphasized by showing that both the new Hamiltonian condition and the most general form of the Pontriagin maximum principle for equality constrained control systems are consequences of the Euler-Weierstrass condition. An example is given demonstrating that the new Hamiltonian condition is strictly stronger than the previously known one.

MSC:

49K24 Optimal control problems with differential inclusions (nec./ suff.) (MSC2000)
34H05 Control problems involving ordinary differential equations
49K15 Optimality conditions for problems involving ordinary differential equations
34A60 Ordinary differential inclusions
49J52 Nonsmooth analysis
Full Text: DOI

References:

[1] Jean-Pierre Aubin, Lipschitz behavior of solutions to convex minimization problems, Math. Oper. Res. 9 (1984), no. 1, 87 – 111. · Zbl 0539.90085 · doi:10.1287/moor.9.1.87
[2] V. I. Blagodat\cdot skikh, The maximum principle for differential inclusions, Trudy Mat. Inst. Steklov. 166 (1984), 23 – 43 (Russian). Modern problems of mathematics. Differential equations, mathematical analysis and their applications.
[3] V. G. Boltjanskiĭ, The method of local cross sections in the theory of optimal processes., Differencial\(^{\prime}\)nye Uravnenija 4 (1968), 2166 – 2183 (Russian). · Zbl 0174.40703
[4] Frank H. Clarke, Generalized gradients and applications, Trans. Amer. Math. Soc. 205 (1975), 247 – 262. · Zbl 0307.26012
[5] Frank H. Clarke, Necessary conditions for a general control problem, Calculus of variations and control theory (Proc. Sympos., Math. Res. Center, Univ. Wisconsin, Madison, Wis., 1975; dedicated to Laurence Chisholm Young on the occasion of his 70th birthday), Publ. Math. Res. Center Univ. Wisconsin, No. 36, Academic Press, New York, 1976, pp. 257 – 278.
[6] Frank H. Clarke, The generalized problem of Bolza, SIAM J. Control Optimization 14 (1976), no. 4, 682 – 699. · Zbl 0333.49023 · doi:10.1137/0314044
[7] Frank H. Clarke, Extremal arcs and extended Hamiltonian systems, Trans. Amer. Math. Soc. 231 (1977), no. 2, 349 – 367. · Zbl 0369.49011
[8] Frank H. Clarke, Optimal control and the true Hamiltonian, SIAM Rev. 21 (1979), no. 2, 157 – 166. · Zbl 0408.49025 · doi:10.1137/1021027
[9] Frank H. Clarke, Optimization and nonsmooth analysis, Canadian Mathematical Society Series of Monographs and Advanced Texts, John Wiley & Sons, Inc., New York, 1983. A Wiley-Interscience Publication. K.-H. Hoffmann, Steuerung freier Ränder, Jahresber. Deutsch. Math.-Verein. 91 (1989), no. 2, 67 – 92 (German). · Zbl 0582.49001
[10] Frank H. Clarke, Methods of dynamic and nonsmooth optimization, CBMS-NSF Regional Conference Series in Applied Mathematics, vol. 57, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 1989. · Zbl 0696.49003
[11] R. Correa, A. Jofré, and L. Thibault, Characterization of lower semicontinuous convex functions, Proc. Amer. Math. Soc. 116 (1992), no. 1, 67 – 72. · Zbl 0762.49007
[12] R. P. Fedorenko, The maximum principle for differential inclusions (necessity), Ž. Vyčisl. Mat. i Mat. Fiz. 11 (1971), 885 – 893 (Russian).
[13] Halina Frankowska, The maximum principle for an optimal solution to a differential inclusion with end points constraints, SIAM J. Control Optim. 25 (1987), no. 1, 145 – 157. · Zbl 0614.49017 · doi:10.1137/0325010
[14] Halina Frankowska, Contingent cones to reachable sets of control systems, SIAM J. Control Optim. 27 (1989), no. 1, 170 – 198. · Zbl 0671.49030 · doi:10.1137/0327010
[15] B. Ginsburg and A. Ioffe, The maximum principle in optimal control of systems governed by semilinear equations, Proceedings of the IMA Workshop on Nonsmooth Analysis and Geometric Methods in Deterministic Optimal Control, B. Mordukhovich and H. Sussman, eds, IMA Vol. Math. Appl., 78, Springer, 1996, pp. 81-110. CMP 97:03
[16] J.-B. Hiriart-Urruty, Extension of Lipschitz functions, J. Math. Anal. Appl. 77 (1980), no. 2, 539 – 554. · Zbl 0455.26006 · doi:10.1016/0022-247X(80)90246-2
[17] A. Ioffe Necessary and sufficient conditions for a local minimum SIAM J. Control Optimization 17 (1979), 245-250. · Zbl 0417.49027
[18] Alexandre D. Ioffe, Sous-différentielles approchées de fonctions numériques, C. R. Acad. Sci. Paris Sér. I Math. 292 (1981), no. 14, 675 – 678 (French, with English summary). · Zbl 0482.46029
[19] A. D. Ioffe, Single-valued representation of set-valued mappings. II. Application to differential inclusions, SIAM J. Control Optim. 21 (1983), no. 4, 641 – 651. · Zbl 0539.49009 · doi:10.1137/0321038
[20] A. D. Ioffe, Calculus of Dini subdifferentials of functions and contingent coderivatives of set-valued maps, Nonlinear Anal. 8 (1984), no. 5, 517 – 539. · Zbl 0542.46023 · doi:10.1016/0362-546X(84)90091-9
[21] A. D. Ioffe, Approximate subdifferentials and applications. I. The finite-dimensional theory, Trans. Amer. Math. Soc. 281 (1984), no. 1, 389 – 416. · Zbl 0531.49014
[22] A. D. Ioffe, Necessary conditions in nonsmooth optimization, Math. Oper. Res. 9 (1984), no. 2, 159 – 189. · Zbl 0548.90088 · doi:10.1287/moor.9.2.159
[23] A. D. Ioffe, Proximal analysis and approximate subdifferentials, J. London Math. Soc. (2) 41 (1990), no. 1, 175 – 192. · Zbl 0725.46045 · doi:10.1112/jlms/s2-41.1.175
[24] A. Ioffe, Nonsmooth subdifferentials: their calculus and applications, Proceedings of the 1st Congress of Nonlinear Analysts, de Gruyter, Berlin, 1996, pp. 2299-2310. CMP 96:12
[25] A. D. Ioffe and R. T. Rockafellar, The Euler and Weierstrass conditions for nonsmooth variational problems, Calc. Var. Partial Differential Equations 4 (1996), no. 1, 59 – 87. · Zbl 0838.49015 · doi:10.1007/BF01322309
[26] Теория ѐкстремал\(^{\приме}\)ных задач., Издат. ”Наука”, Мосцощ, 1974 (Руссиан). Серия ”Нелинейный Анализ и его Приложения”. [Сериес ин Нонлинеар Аналысис анд иц Апплицатионс].
[27] A. Jourani and L. Thibault, Verifiable conditions for openness and regularity of multivalued mappings in Banach spaces, Trans. Amer. Math. Soc. 347 (1995), no. 4, 1255 – 1268. · Zbl 0827.54013
[28] Barbara Kaśkosz and Stanisław Łojasiewicz Jr., A maximum principle for generalized control systems, Nonlinear Anal. 9 (1985), no. 2, 109 – 130. · Zbl 0557.49012 · doi:10.1016/0362-546X(85)90067-7
[29] Barbara Kaśkosz and Stanisław Łojasiewicz Jr., Lagrange-type extremal trajectories in differential inclusions, Systems Control Lett. 19 (1992), no. 3, 241 – 247. · Zbl 0773.49002 · doi:10.1016/0167-6911(92)90119-D
[30] Philip D. Loewen and R. T. Rockafellar, The adjoint arc in nonsmooth optimization, Trans. Amer. Math. Soc. 325 (1991), no. 1, 39 – 72. · Zbl 0734.49009
[31] Philip D. Loewen and R. T. Rockafellar, Optimal control of unbounded differential inclusions, SIAM J. Control Optim. 32 (1994), no. 2, 442 – 470. · Zbl 0823.49016 · doi:10.1137/S0363012991217494
[32] P. Loewen and R. T. Rockafellar, New necessary conditions for generalized problem of Bolza, SIAM J. Control Optimization 34 (1996), 1496-1511. CMP 96:17 · Zbl 0871.49023
[33] P. D. Loewen and R. B. Vinter, Pontriagin-type necessary conditions for differential inclusion problem, System and Control Letters 9 (1987), 263-265. · Zbl 0639.49017
[34] S. Lojasiewicz, Lipschitz selectors of orientor fields
[35] S. Lojasiewicz, Local controllability of parametrized differential equations, in preparation.
[36] B. Sh. Mordukhovich, Maximum principle in the problem of time optimal response with nonsmooth constraints, Prikl. Mat. Meh. 40 (1976), no. 6, 1014 – 1023 (Russian); English transl., J. Appl. Math. Mech. 40 (1976), no. 6, 960 – 969 (1977). · Zbl 0362.49017 · doi:10.1016/0021-8928(76)90136-2
[37] B. Š. Morduhovič, Metric approximations and necessary conditions for optimality for general classes of nonsmooth extremal problems, Dokl. Akad. Nauk SSSR 254 (1980), no. 5, 1072 – 1076 (Russian).
[38] Методы аппроксимаций в задачах оптимизации и управления, ”Наука”, Мосцощ, 1988 (Руссиан). · Zbl 0643.49001
[39] A. Ioffe, M. Marcus, and S. Reich , Optimization and nonlinear analysis, Pitman Research Notes in Mathematics Series, vol. 244, Longman Scientific & Technical, Harlow; copublished in the United States with John Wiley & Sons, Inc., New York, 1992. · Zbl 0745.00050
[40] Boris Mordukhovich, Complete characterization of openness, metric regularity, and Lipschitzian properties of multifunctions, Trans. Amer. Math. Soc. 340 (1993), no. 1, 1 – 35. · Zbl 0791.49018
[41] Boris S. Mordukhovich, Discrete approximations and refined Euler-Lagrange conditions for nonconvex differential inclusions, SIAM J. Control Optim. 33 (1995), no. 3, 882 – 915. · Zbl 0844.49017 · doi:10.1137/S0363012993245665
[42] E. S. Polovinkin and G. V. Smirnov, An approach to differentiation of multivalued mappings, and necessary conditions for optimality of solutions of differential inclusions, Differentsial\(^{\prime}\)nye Uravneniya 22 (1986), no. 6, 944 – 954, 1098 – 1099 (Russian). · Zbl 0604.49011
[43] R. Tyrrell Rockafellar, Convex analysis, Princeton Mathematical Series, No. 28, Princeton University Press, Princeton, N.J., 1970. · Zbl 0193.18401
[44] R. Tyrrell Rockafellar, Generalized Hamiltonian equations for convex problems of Lagrange, Pacific J. Math. 33 (1970), 411 – 427. · Zbl 0199.43002
[45] R. T. Rockafellar, Existence and duality theorems for convex problems of Bolza, Trans. Amer. Math. Soc. 159 (1971), 1 – 40. · Zbl 0255.49007
[46] R. Tyrrell Rockafellar, Lipschitzian properties of multifunctions, Nonlinear Anal. 9 (1985), no. 8, 867 – 885. · Zbl 0573.54011 · doi:10.1016/0362-546X(85)90024-0
[47] R. T. Rockafellar, Dualization of subgradient conditions for optimality, Nonlinear Anal. 20 (1993), no. 6, 627 – 646. · Zbl 0786.49012 · doi:10.1016/0362-546X(93)90024-M
[48] R. T. Rockafellar, Equivalent subgradient versions of Hamiltonian and Euler-Lagrange equations in variational analysis, SIAM J. Control Optim. 34 (1996), 1300-1314. CMP 96:14
[49] G. V. Smirnov, Discrete approximations and optimal solutions of differential inclusions, Kibernetika (Kiev) 1 (1991), 76 – 79, 98, 135 (Russian, with English and Ukrainian summaries); English transl., Cybernetics 27 (1991), no. 1, 101 – 107.
[50] H. J. Sussmann, A strong version of the Łojasiewicz maximum principle, Optimal control of differential equations (Athens, OH, 1993) Lecture Notes in Pure and Appl. Math., vol. 160, Dekker, New York, 1994, pp. 293 – 309. · Zbl 0816.49018
[51] R. Vinter and H. Zheng, The extended Euler-Lagrange condition for nonconvex variational problems, SIAM J. Control Optimization, to appear. · Zbl 0870.49014
[52] J. Warga, Controllability, extremality, and abnormality in nonsmooth optimal control, J. Optim. Theory Appl. 41 (1983), no. 1, 239 – 260. · Zbl 0497.49033 · doi:10.1007/BF00934445
[53] Q. Zhu, Necessary optimality conditions for nonconvex differentiable inclusions with endpoint constraints, J. Differential Equations 124 (1996), 186-204. CMP 96:06
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.